mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
138 lines
6.1 KiB
Python
138 lines
6.1 KiB
Python
from typing import List, Set, Dict, Iterable, ItemsView, Union, TYPE_CHECKING
|
|
from wasabi import msg
|
|
|
|
from .tokens import Doc, Token, Span
|
|
from .errors import Errors
|
|
from .util import dot_to_dict
|
|
|
|
if TYPE_CHECKING:
|
|
# This lets us add type hints for mypy etc. without causing circular imports
|
|
from .language import Language # noqa: F401
|
|
|
|
|
|
DEFAULT_KEYS = ["requires", "assigns", "scores", "retokenizes"]
|
|
|
|
|
|
def validate_attrs(values: Iterable[str]) -> Iterable[str]:
|
|
"""Validate component attributes provided to "assigns", "requires" etc.
|
|
Raises error for invalid attributes and formatting. Doesn't check if
|
|
custom extension attributes are registered, since this is something the
|
|
user might want to do themselves later in the component.
|
|
|
|
values (Iterable[str]): The string attributes to check, e.g. `["token.pos"]`.
|
|
RETURNS (Iterable[str]): The checked attributes.
|
|
"""
|
|
data = dot_to_dict({value: True for value in values})
|
|
objs = {"doc": Doc, "token": Token, "span": Span}
|
|
for obj_key, attrs in data.items():
|
|
if obj_key == "span":
|
|
# Support Span only for custom extension attributes
|
|
span_attrs = [attr for attr in values if attr.startswith("span.")]
|
|
span_attrs = [attr for attr in span_attrs if not attr.startswith("span._.")]
|
|
if span_attrs:
|
|
raise ValueError(Errors.E180.format(attrs=", ".join(span_attrs)))
|
|
if obj_key not in objs: # first element is not doc/token/span
|
|
invalid_attrs = ", ".join(a for a in values if a.startswith(obj_key))
|
|
raise ValueError(Errors.E181.format(obj=obj_key, attrs=invalid_attrs))
|
|
if not isinstance(attrs, dict): # attr is something like "doc"
|
|
raise ValueError(Errors.E182.format(attr=obj_key))
|
|
for attr, value in attrs.items():
|
|
if attr == "_":
|
|
if value is True: # attr is something like "doc._"
|
|
raise ValueError(Errors.E182.format(attr="{}._".format(obj_key)))
|
|
for ext_attr, ext_value in value.items():
|
|
# We don't check whether the attribute actually exists
|
|
if ext_value is not True: # attr is something like doc._.x.y
|
|
good = f"{obj_key}._.{ext_attr}"
|
|
bad = f"{good}.{'.'.join(ext_value)}"
|
|
raise ValueError(Errors.E183.format(attr=bad, solution=good))
|
|
continue # we can't validate those further
|
|
if attr.endswith("_"): # attr is something like "token.pos_"
|
|
raise ValueError(Errors.E184.format(attr=attr, solution=attr[:-1]))
|
|
if value is not True: # attr is something like doc.x.y
|
|
good = f"{obj_key}.{attr}"
|
|
bad = f"{good}.{'.'.join(value)}"
|
|
raise ValueError(Errors.E183.format(attr=bad, solution=good))
|
|
obj = objs[obj_key]
|
|
if not hasattr(obj, attr):
|
|
raise ValueError(Errors.E185.format(obj=obj_key, attr=attr))
|
|
return values
|
|
|
|
|
|
def get_attr_info(nlp: "Language", attr: str) -> Dict[str, List[str]]:
|
|
"""Check which components in the pipeline assign or require an attribute.
|
|
|
|
nlp (Language): The current nlp object.
|
|
attr (str): The attribute, e.g. "doc.tensor".
|
|
RETURNS (Dict[str, List[str]]): A dict keyed by "assigns" and "requires",
|
|
mapped to a list of component names.
|
|
"""
|
|
result: Dict[str, List[str]] = {"assigns": [], "requires": []}
|
|
for pipe_name in nlp.pipe_names:
|
|
meta = nlp.get_pipe_meta(pipe_name)
|
|
if attr in meta.assigns:
|
|
result["assigns"].append(pipe_name)
|
|
if attr in meta.requires:
|
|
result["requires"].append(pipe_name)
|
|
return result
|
|
|
|
|
|
def analyze_pipes(
|
|
nlp: "Language", *, keys: List[str] = DEFAULT_KEYS
|
|
) -> Dict[str, Dict[str, Union[List[str], Dict]]]:
|
|
"""Print a formatted summary for the current nlp object's pipeline. Shows
|
|
a table with the pipeline components and why they assign and require, as
|
|
well as any problems if available.
|
|
|
|
nlp (Language): The nlp object.
|
|
keys (List[str]): The meta keys to show in the table.
|
|
RETURNS (dict): A dict with "summary" and "problems".
|
|
"""
|
|
result: Dict[str, Dict[str, Union[List[str], Dict]]] = {
|
|
"summary": {},
|
|
"problems": {},
|
|
}
|
|
all_attrs: Set[str] = set()
|
|
for i, name in enumerate(nlp.pipe_names):
|
|
meta = nlp.get_pipe_meta(name)
|
|
all_attrs.update(meta.assigns)
|
|
all_attrs.update(meta.requires)
|
|
result["summary"][name] = {key: getattr(meta, key, None) for key in keys}
|
|
prev_pipes = nlp.pipeline[:i]
|
|
requires = {annot: False for annot in meta.requires}
|
|
if requires:
|
|
for prev_name, prev_pipe in prev_pipes:
|
|
prev_meta = nlp.get_pipe_meta(prev_name)
|
|
for annot in prev_meta.assigns:
|
|
requires[annot] = True
|
|
result["problems"][name] = [
|
|
annot for annot, fulfilled in requires.items() if not fulfilled
|
|
]
|
|
result["attrs"] = {attr: get_attr_info(nlp, attr) for attr in all_attrs}
|
|
return result
|
|
|
|
|
|
def print_pipe_analysis(
|
|
analysis: Dict[str, Dict[str, Union[List[str], Dict]]],
|
|
*,
|
|
keys: List[str] = DEFAULT_KEYS,
|
|
) -> None:
|
|
"""Print a formatted version of the pipe analysis produced by analyze_pipes.
|
|
|
|
analysis (Dict[str, Union[List[str], Dict[str, List[str]]]]): The analysis.
|
|
keys (List[str]): The meta keys to show in the table.
|
|
"""
|
|
msg.divider("Pipeline Overview")
|
|
header = ["#", "Component", *[key.capitalize() for key in keys]]
|
|
summary: ItemsView = analysis["summary"].items()
|
|
body = [[i, n, *[v for v in m.values()]] for i, (n, m) in enumerate(summary)]
|
|
msg.table(body, header=header, divider=True, multiline=True)
|
|
n_problems = sum(len(p) for p in analysis["problems"].values())
|
|
if any(p for p in analysis["problems"].values()):
|
|
msg.divider(f"Problems ({n_problems})")
|
|
for name, problem in analysis["problems"].items():
|
|
if problem:
|
|
msg.warn(f"'{name}' requirements not met: {', '.join(problem)}")
|
|
else:
|
|
msg.good("No problems found.")
|