spaCy/spacy/tokens/doc.pyi

196 lines
5.9 KiB
Python

from pathlib import Path
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Protocol,
Tuple,
Union,
overload,
)
import numpy as np
from cymem.cymem import Pool
from thinc.types import ArrayXd, Floats1d, Floats2d, Ints2d, Ragged
from ..lexeme import Lexeme
from ..vocab import Vocab
from .retokenizer import Retokenizer
from .span import Span
from .span_groups import SpanGroups
from .token import Token
from .underscore import Underscore
DOCBIN_ALL_ATTRS: Tuple[str, ...]
class DocMethod(Protocol):
def __call__(self: Doc, *args: Any, **kwargs: Any) -> Any: ... # type: ignore[misc]
class Doc:
vocab: Vocab
mem: Pool
spans: SpanGroups
max_length: int
length: int
activations: Dict[str, Dict[str, Union[ArrayXd, Ragged]]]
cats: Dict[str, float]
user_hooks: Dict[str, Callable[..., Any]]
user_token_hooks: Dict[str, Callable[..., Any]]
user_span_hooks: Dict[str, Callable[..., Any]]
tensor: np.ndarray[Any, np.dtype[np.float_]]
user_data: Dict[str, Any]
has_unknown_spaces: bool
_context: Any
@classmethod
def set_extension(
cls,
name: str,
default: Optional[Any] = ...,
getter: Optional[Callable[[Doc], Any]] = ...,
setter: Optional[Callable[[Doc, Any], None]] = ...,
method: Optional[DocMethod] = ...,
force: bool = ...,
) -> None: ...
@classmethod
def get_extension(
cls, name: str
) -> Tuple[
Optional[Any],
Optional[DocMethod],
Optional[Callable[[Doc], Any]],
Optional[Callable[[Doc, Any], None]],
]: ...
@classmethod
def has_extension(cls, name: str) -> bool: ...
@classmethod
def remove_extension(
cls, name: str
) -> Tuple[
Optional[Any],
Optional[DocMethod],
Optional[Callable[[Doc], Any]],
Optional[Callable[[Doc, Any], None]],
]: ...
def __init__(
self,
vocab: Vocab,
words: Optional[List[str]] = ...,
spaces: Optional[List[bool]] = ...,
user_data: Optional[Dict[Any, Any]] = ...,
tags: Optional[List[str]] = ...,
pos: Optional[List[str]] = ...,
morphs: Optional[List[str]] = ...,
lemmas: Optional[List[str]] = ...,
heads: Optional[List[int]] = ...,
deps: Optional[List[str]] = ...,
sent_starts: Optional[List[Union[bool, int, None]]] = ...,
ents: Optional[List[str]] = ...,
) -> None: ...
@property
def _(self) -> Underscore: ...
@property
def is_tagged(self) -> bool: ...
@property
def is_parsed(self) -> bool: ...
@property
def is_nered(self) -> bool: ...
@property
def is_sentenced(self) -> bool: ...
def has_annotation(
self, attr: Union[int, str], *, require_complete: bool = ...
) -> bool: ...
@overload
def __getitem__(self, i: int) -> Token: ...
@overload
def __getitem__(self, i: slice) -> Span: ...
def __iter__(self) -> Iterator[Token]: ...
def __len__(self) -> int: ...
def __unicode__(self) -> str: ...
def __bytes__(self) -> bytes: ...
def __str__(self) -> str: ...
def __repr__(self) -> str: ...
@property
def doc(self) -> Doc: ...
def char_span(
self,
start_idx: int,
end_idx: int,
label: Union[int, str] = ...,
*,
kb_id: Union[int, str] = ...,
vector: Optional[Floats1d] = ...,
alignment_mode: str = ...,
span_id: Union[int, str] = ...,
) -> Span: ...
def similarity(self, other: Union[Doc, Span, Token, Lexeme]) -> float: ...
@property
def has_vector(self) -> bool: ...
vector: Floats1d
vector_norm: float
@property
def text(self) -> str: ...
@property
def text_with_ws(self) -> str: ...
ents: Tuple[Span]
def set_ents(
self,
entities: List[Span],
*,
blocked: Optional[List[Span]] = ...,
missing: Optional[List[Span]] = ...,
outside: Optional[List[Span]] = ...,
default: str = ...,
) -> None: ...
@property
def noun_chunks(self) -> Tuple[Span]: ...
@property
def sents(self) -> Tuple[Span]: ...
@property
def lang(self) -> int: ...
@property
def lang_(self) -> str: ...
def count_by(
self, attr_id: int, exclude: Optional[Any] = ..., counts: Optional[Any] = ...
) -> Dict[Any, int]: ...
def from_array(
self, attrs: Union[int, str, List[Union[int, str]]], array: Ints2d
) -> Doc: ...
def to_array(
self, py_attr_ids: Union[int, str, List[Union[int, str]]]
) -> np.ndarray[Any, np.dtype[np.float_]]: ...
@staticmethod
def from_docs(
docs: List[Doc],
ensure_whitespace: bool = ...,
attrs: Optional[Union[Tuple[Union[str, int]], List[Union[int, str]]]] = ...,
) -> Doc: ...
def get_lca_matrix(self) -> Ints2d: ...
def copy(self) -> Doc: ...
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = ...
) -> None: ...
def from_disk(
self, path: Union[str, Path], *, exclude: Union[List[str], Tuple[str]] = ...
) -> Doc: ...
def to_bytes(self, *, exclude: Union[List[str], Tuple[str]] = ...) -> bytes: ...
def from_bytes(
self, bytes_data: bytes, *, exclude: Union[List[str], Tuple[str]] = ...
) -> Doc: ...
def to_dict(self, *, exclude: Union[List[str], Tuple[str]] = ...) -> bytes: ...
def from_dict(
self, msg: bytes, *, exclude: Union[List[str], Tuple[str]] = ...
) -> Doc: ...
def extend_tensor(self, tensor: Floats2d) -> None: ...
def retokenize(self) -> Retokenizer: ...
def to_json(self, underscore: Optional[List[str]] = ...) -> Dict[str, Any]: ...
def from_json(
self, doc_json: Dict[str, Any] = ..., validate: bool = False
) -> Doc: ...
def to_utf8_array(self, nr_char: int = ...) -> Ints2d: ...
@staticmethod
def _get_array_attrs() -> Tuple[Any]: ...