mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 13:47:13 +03:00
206 lines
6.5 KiB
JSON
206 lines
6.5 KiB
JSON
{
|
|
"sidebar": {
|
|
"Get started": {
|
|
"Installation": "./",
|
|
"Models & Languages": "models",
|
|
"Facts & Figures": "facts-figures",
|
|
"spaCy 101": "spacy-101",
|
|
"New in v2.0": "v2"
|
|
},
|
|
"Guides": {
|
|
"Linguistic Features": "linguistic-features",
|
|
"Processing Pipelines": "processing-pipelines",
|
|
"Vectors & Similarity": "vectors-similarity",
|
|
"Text Classification": "text-classification",
|
|
"Deep Learning": "deep-learning",
|
|
"Training Models": "training",
|
|
"Adding Languages": "adding-languages",
|
|
"Visualizers": "visualizers"
|
|
},
|
|
"In-depth": {
|
|
"Code Examples": "examples",
|
|
"Resources": "resources"
|
|
}
|
|
},
|
|
|
|
"index": {
|
|
"title": "Install spaCy",
|
|
"next": "models",
|
|
"quickstart": true,
|
|
"changelog": true,
|
|
"menu": {
|
|
"Quickstart": "quickstart",
|
|
"Instructions": "instructions",
|
|
"Troubleshooting": "troubleshooting",
|
|
"Changelog": "changelog"
|
|
}
|
|
},
|
|
|
|
"models": {
|
|
"title": "Models & Languages",
|
|
"next": "facts-figures",
|
|
"quickstart": true,
|
|
"menu": {
|
|
"Quickstart": "quickstart",
|
|
"Available Models": "available",
|
|
"Installation & Usage": "install",
|
|
"Language Support": "languages",
|
|
"Production Use": "production"
|
|
}
|
|
},
|
|
|
|
"facts-figures": {
|
|
"title": "Facts & Figures",
|
|
"teaser": "The hard numbers for spaCy and how it compares to other libraries and tools.",
|
|
"next": "spacy-101",
|
|
"menu": {
|
|
"Feature comparison": "comparison",
|
|
"Benchmarks": "benchmarks",
|
|
"Powered by spaCy": "powered-by",
|
|
"Other Libraries": "other-libraries"
|
|
}
|
|
},
|
|
|
|
"spacy-101": {
|
|
"title": "spaCy 101: Everything you need to know",
|
|
"teaser": "The most important concepts, explained in simple terms.",
|
|
"next": "index",
|
|
"quickstart": true,
|
|
"preview": "101",
|
|
"menu": {
|
|
"Features": "features",
|
|
"Lightning tour": "lightning-tour",
|
|
"Architecture": "architecture",
|
|
"Community & FAQ": "community-faq"
|
|
}
|
|
},
|
|
|
|
"v2": {
|
|
"title": "What's New in v2.0",
|
|
"teaser": "New features, backwards incompatibilities and migration guide.",
|
|
"menu": {
|
|
"New features": "features",
|
|
"Backwards Incompatibilities": "incompat",
|
|
"Migrating from v1.x": "migrating",
|
|
"Benchmarks": "benchmarks"
|
|
}
|
|
},
|
|
|
|
"linguistic-features": {
|
|
"title": "Linguistic Features",
|
|
"teaser": "Using spaCy to extract linguistic features like part-of-speech tags, dependency labels and named entities, customising the tokenizer and working with the rule-based matcher.",
|
|
"next": "processing-pipelines",
|
|
"menu": {
|
|
"POS Tagging": "pos-tagging",
|
|
"Dependency Parse": "dependency-parse",
|
|
"Named Entities": "named-entities",
|
|
"Tokenization": "tokenization",
|
|
"Rule-based Matching": "rule-based-matching"
|
|
}
|
|
},
|
|
|
|
"processing-pipelines": {
|
|
"title": "Language Processing Pipelines",
|
|
"next": "vectors-similarity",
|
|
"menu": {
|
|
"How Pipelines Work": "pipelines",
|
|
"Custom Components": "custom-components",
|
|
"Developing Extensions": "extensions",
|
|
"Multi-Threading": "multithreading",
|
|
"Serialization": "serialization"
|
|
}
|
|
},
|
|
|
|
"vectors-similarity": {
|
|
"title": "Word Vectors and Semantic Similarity",
|
|
"next": "text-classification",
|
|
"menu": {
|
|
"Basics": "basics",
|
|
"Custom Vectors": "custom",
|
|
"GPU Usage": "gpu"
|
|
}
|
|
},
|
|
|
|
"deep-learning": {
|
|
"title": "Deep Learning",
|
|
"teaser": "Using spaCy to pre-process text for deep learning, and how to plug in your own machine learning models.",
|
|
"next": "training",
|
|
"menu": {
|
|
"Pre-processing Text": "pre-processing",
|
|
"spaCy and Thinc": "thinc",
|
|
"TensorFlow / Keras": "tensorflow-keras",
|
|
"scikit-learn": "scikit-learn",
|
|
"PyTorch": "pytorch",
|
|
"DyNet": "dynet"
|
|
}
|
|
},
|
|
|
|
"text-classification": {
|
|
"title": "Text Classification",
|
|
"next": "training"
|
|
},
|
|
|
|
"training": {
|
|
"title": "Training spaCy's Statistical Models",
|
|
"next": "adding-languages",
|
|
"menu": {
|
|
"Basics": "basics",
|
|
"NER": "ner",
|
|
"Tagger & Parser": "tagger-parser",
|
|
"Similarity": "similarity",
|
|
"Text Classification": "textcat",
|
|
"Saving & Loading": "saving-loading"
|
|
}
|
|
},
|
|
|
|
"adding-languages": {
|
|
"title": "Adding Languages",
|
|
"teaser": "Adding full support for a language touches many different parts of the spaCy library. This guide explains how to fit everything together, and points you to the specific workflows for each component.",
|
|
"next": "training",
|
|
"menu": {
|
|
"Language data": "language-data",
|
|
"Testing": "testing",
|
|
"Training": "training"
|
|
}
|
|
},
|
|
|
|
"visualizers": {
|
|
"title": "Visualizers",
|
|
"tag_new": 2,
|
|
"teaser": "Visualize dependencies and entities in your browser and notebook, or export HTML.",
|
|
"next": "resources",
|
|
"menu": {
|
|
"Dependencies": "dep",
|
|
"Entities": "ent",
|
|
"Jupyter Notebooks": "jupyter",
|
|
"Rendering HTML": "html"
|
|
}
|
|
},
|
|
|
|
"resources": {
|
|
"title": "Resources",
|
|
"teaser": "Libraries, demos, books, courses and research systems featuring spaCy.",
|
|
"menu": {
|
|
"Third-party libraries": "libraries",
|
|
"Extensions": "extensions",
|
|
"Demos & Visualizations": "demos",
|
|
"Books & Courses": "books",
|
|
"Jupyter Notebooks": "notebooks",
|
|
"Research": "research"
|
|
}
|
|
},
|
|
|
|
"examples": {
|
|
"title": "Code Examples",
|
|
"teaser": "Full code examples you can modify and run.",
|
|
"next": "resources",
|
|
"menu": {
|
|
"Information Extraction": "information-extraction",
|
|
"Pipeline": "pipeline",
|
|
"Training": "training",
|
|
"Vectors & Similarity": "vectors",
|
|
"Deep Learning": "deep-learning"
|
|
}
|
|
}
|
|
}
|