mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 22:36:32 +03:00
8c29268749
* Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
192 lines
7.3 KiB
Python
192 lines
7.3 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf8
|
|
"""Train a convolutional neural network text classifier on the
|
|
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
|
|
automatically via the package `ml_datasets`. The model is added to
|
|
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
|
|
see the documentation:
|
|
* Training: https://spacy.io/usage/training
|
|
|
|
Compatible with: spaCy v3.0.0+
|
|
"""
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
import plac
|
|
import random
|
|
from pathlib import Path
|
|
from ml_datasets import loaders
|
|
|
|
import spacy
|
|
from spacy import util
|
|
from spacy.util import minibatch, compounding
|
|
from spacy.gold import Example
|
|
|
|
|
|
@plac.annotations(
|
|
config_path=("Path to config file", "positional", None, Path),
|
|
output_dir=("Optional output directory", "option", "o", Path),
|
|
n_texts=("Number of texts to train from", "option", "t", int),
|
|
n_iter=("Number of training iterations", "option", "n", int),
|
|
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
|
|
dataset=("Dataset to train on (default: imdb)", "option", "d", str),
|
|
threshold=("Min. number of instances for a given label (default 20)", "option", "m", int)
|
|
)
|
|
def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20):
|
|
if not config_path or not config_path.exists():
|
|
raise ValueError(f"Config file not found at {config_path}")
|
|
|
|
spacy.util.fix_random_seed()
|
|
if output_dir is not None:
|
|
output_dir = Path(output_dir)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
|
|
print(f"Loading nlp model from {config_path}")
|
|
nlp_config = util.load_config(config_path, create_objects=False)["nlp"]
|
|
nlp = util.load_model_from_config(nlp_config)
|
|
|
|
# ensure the nlp object was defined with a textcat component
|
|
if "textcat" not in nlp.pipe_names:
|
|
raise ValueError(f"The nlp definition in the config does not contain a textcat component")
|
|
|
|
textcat = nlp.get_pipe("textcat")
|
|
|
|
# load the dataset
|
|
print(f"Loading dataset {dataset} ...")
|
|
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts)
|
|
print(
|
|
"Using {} examples ({} training, {} evaluation)".format(
|
|
n_texts, len(train_texts), len(dev_texts)
|
|
)
|
|
)
|
|
train_examples = []
|
|
for text, cats in zip(train_texts, train_cats):
|
|
doc = nlp.make_doc(text)
|
|
example = Example.from_dict(doc, {"cats": cats})
|
|
for cat in cats:
|
|
textcat.add_label(cat)
|
|
train_examples.append(example)
|
|
|
|
with nlp.select_pipes(enable="textcat"): # only train textcat
|
|
optimizer = nlp.begin_training()
|
|
if init_tok2vec is not None:
|
|
with init_tok2vec.open("rb") as file_:
|
|
textcat.model.get_ref("tok2vec").from_bytes(file_.read())
|
|
print("Training the model...")
|
|
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
|
|
batch_sizes = compounding(4.0, 32.0, 1.001)
|
|
for i in range(n_iter):
|
|
losses = {}
|
|
# batch up the examples using spaCy's minibatch
|
|
random.shuffle(train_examples)
|
|
batches = minibatch(train_examples, size=batch_sizes)
|
|
for batch in batches:
|
|
nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
|
|
with textcat.model.use_params(optimizer.averages):
|
|
# evaluate on the dev data split off in load_data()
|
|
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
|
|
print(
|
|
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
|
|
losses["textcat"],
|
|
scores["textcat_p"],
|
|
scores["textcat_r"],
|
|
scores["textcat_f"],
|
|
)
|
|
)
|
|
|
|
# test the trained model (only makes sense for sentiment analysis)
|
|
test_text = "This movie sucked"
|
|
doc = nlp(test_text)
|
|
print(test_text, doc.cats)
|
|
|
|
if output_dir is not None:
|
|
with nlp.use_params(optimizer.averages):
|
|
nlp.to_disk(output_dir)
|
|
print("Saved model to", output_dir)
|
|
|
|
# test the saved model
|
|
print("Loading from", output_dir)
|
|
nlp2 = spacy.load(output_dir)
|
|
doc2 = nlp2(test_text)
|
|
print(test_text, doc2.cats)
|
|
|
|
|
|
def load_data(dataset, threshold, limit=0, split=0.8):
|
|
"""Load data from the provided dataset."""
|
|
# Partition off part of the train data for evaluation
|
|
data_loader = loaders.get(dataset)
|
|
train_data, _ = data_loader(limit=int(limit/split))
|
|
random.shuffle(train_data)
|
|
texts, labels = zip(*train_data)
|
|
|
|
unique_labels = set()
|
|
for label_set in labels:
|
|
if isinstance(label_set, int) or isinstance(label_set, str):
|
|
unique_labels.add(label_set)
|
|
elif isinstance(label_set, list) or isinstance(label_set, set):
|
|
unique_labels.update(label_set)
|
|
unique_labels = sorted(unique_labels)
|
|
print(f"# of unique_labels: {len(unique_labels)}")
|
|
|
|
count_values_train = dict()
|
|
for text, annot_list in train_data:
|
|
if isinstance(annot_list, int) or isinstance(annot_list, str):
|
|
count_values_train[annot_list] = count_values_train.get(annot_list, 0) + 1
|
|
else:
|
|
for annot in annot_list:
|
|
count_values_train[annot] = count_values_train.get(annot, 0) + 1
|
|
for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
|
|
if count < threshold:
|
|
unique_labels.remove(value)
|
|
|
|
print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}")
|
|
|
|
if unique_labels == {0, 1}:
|
|
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
|
|
else:
|
|
cats = []
|
|
for y in labels:
|
|
if isinstance(y, str) or isinstance(y, int):
|
|
cats.append({str(label): (label == y) for label in unique_labels})
|
|
elif isinstance(y, set):
|
|
cats.append({str(label): (label in y) for label in unique_labels})
|
|
else:
|
|
raise ValueError(f"Unrecognised type of labels: {type(y)}")
|
|
|
|
split = int(len(train_data) * split)
|
|
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
|
|
|
|
|
|
def evaluate(tokenizer, textcat, texts, cats):
|
|
docs = (tokenizer(text) for text in texts)
|
|
tp = 0.0 # True positives
|
|
fp = 1e-8 # False positives
|
|
fn = 1e-8 # False negatives
|
|
tn = 0.0 # True negatives
|
|
for i, doc in enumerate(textcat.pipe(docs)):
|
|
gold = cats[i]
|
|
for label, score in doc.cats.items():
|
|
if label not in gold:
|
|
continue
|
|
if label == "NEGATIVE":
|
|
continue
|
|
if score >= 0.5 and gold[label] >= 0.5:
|
|
tp += 1.0
|
|
elif score >= 0.5 and gold[label] < 0.5:
|
|
fp += 1.0
|
|
elif score < 0.5 and gold[label] < 0.5:
|
|
tn += 1
|
|
elif score < 0.5 and gold[label] >= 0.5:
|
|
fn += 1
|
|
precision = tp / (tp + fp)
|
|
recall = tp / (tp + fn)
|
|
if (precision + recall) == 0:
|
|
f_score = 0.0
|
|
else:
|
|
f_score = 2 * (precision * recall) / (precision + recall)
|
|
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|