mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-18 05:24:12 +03:00
23749cfc91
* adding spans to doc_annotation in Example.to_dict * to_dict compatible with from_dict: tuples instead of spans * use strings for label and kb_id * Simplify test * Update data formats docs Co-authored-by: Stefanie Wolf <stefanie.wolf@vitecsoftware.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
661 lines
24 KiB
Cython
661 lines
24 KiB
Cython
from collections.abc import Iterable as IterableInstance
|
|
import warnings
|
|
import numpy
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..tokens.span cimport Span
|
|
from ..tokens.span import Span
|
|
from ..attrs import IDS
|
|
from .alignment import Alignment
|
|
from .iob_utils import biluo_to_iob, offsets_to_biluo_tags, doc_to_biluo_tags
|
|
from .iob_utils import biluo_tags_to_spans, remove_bilu_prefix
|
|
from ..errors import Errors, Warnings
|
|
from ..pipeline._parser_internals import nonproj
|
|
from ..tokens.token cimport MISSING_DEP
|
|
from ..util import logger, to_ternary_int, all_equal
|
|
|
|
|
|
cpdef Doc annotations_to_doc(vocab, tok_annot, doc_annot):
|
|
""" Create a Doc from dictionaries with token and doc annotations. """
|
|
attrs, array = _annot2array(vocab, tok_annot, doc_annot)
|
|
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
|
|
if "entities" in doc_annot:
|
|
_add_entities_to_doc(output, doc_annot["entities"])
|
|
if "spans" in doc_annot:
|
|
_add_spans_to_doc(output, doc_annot["spans"])
|
|
if array.size:
|
|
output = output.from_array(attrs, array)
|
|
# links are currently added with ENT_KB_ID on the token level
|
|
output.cats.update(doc_annot.get("cats", {}))
|
|
return output
|
|
|
|
|
|
def validate_examples(examples, method):
|
|
"""Check that a batch of examples received during processing is valid.
|
|
This function lives here to prevent circular imports.
|
|
|
|
examples (Iterable[Examples]): A batch of examples.
|
|
method (str): The method name to show in error messages.
|
|
"""
|
|
if not isinstance(examples, IterableInstance):
|
|
err = Errors.E978.format(name=method, types=type(examples))
|
|
raise TypeError(err)
|
|
wrong = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
|
if wrong:
|
|
err = Errors.E978.format(name=method, types=wrong)
|
|
raise TypeError(err)
|
|
|
|
|
|
def validate_get_examples(get_examples, method):
|
|
"""Check that a generator of a batch of examples received during processing is valid:
|
|
the callable produces a non-empty list of Example objects.
|
|
This function lives here to prevent circular imports.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): A function that produces a batch of examples.
|
|
method (str): The method name to show in error messages.
|
|
"""
|
|
if get_examples is None or not hasattr(get_examples, "__call__"):
|
|
err = Errors.E930.format(method=method, obj=type(get_examples))
|
|
raise TypeError(err)
|
|
examples = get_examples()
|
|
if not examples:
|
|
err = Errors.E930.format(method=method, obj=examples)
|
|
raise TypeError(err)
|
|
validate_examples(examples, method)
|
|
|
|
|
|
cdef class Example:
|
|
def __init__(self, Doc predicted, Doc reference, *, alignment=None):
|
|
if predicted is None:
|
|
raise TypeError(Errors.E972.format(arg="predicted"))
|
|
if reference is None:
|
|
raise TypeError(Errors.E972.format(arg="reference"))
|
|
self.predicted = predicted
|
|
self.reference = reference
|
|
self._cached_alignment = alignment
|
|
|
|
def __len__(self):
|
|
return len(self.predicted)
|
|
|
|
property predicted:
|
|
def __get__(self):
|
|
return self.x
|
|
|
|
def __set__(self, doc):
|
|
self.x = doc
|
|
self._cached_alignment = None
|
|
self._cached_words_x = [t.text for t in doc]
|
|
|
|
property reference:
|
|
def __get__(self):
|
|
return self.y
|
|
|
|
def __set__(self, doc):
|
|
self.y = doc
|
|
self._cached_alignment = None
|
|
self._cached_words_y = [t.text for t in doc]
|
|
|
|
def copy(self):
|
|
return Example(
|
|
self.x.copy(),
|
|
self.y.copy()
|
|
)
|
|
|
|
@classmethod
|
|
def from_dict(cls, Doc predicted, dict example_dict):
|
|
if predicted is None:
|
|
raise ValueError(Errors.E976.format(n="first", type="Doc"))
|
|
if example_dict is None:
|
|
raise ValueError(Errors.E976.format(n="second", type="dict"))
|
|
example_dict = _fix_legacy_dict_data(example_dict)
|
|
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
|
|
if "ORTH" not in tok_dict:
|
|
tok_dict["ORTH"] = [tok.text for tok in predicted]
|
|
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
|
|
return Example(
|
|
predicted,
|
|
annotations_to_doc(predicted.vocab, tok_dict, doc_dict)
|
|
)
|
|
|
|
@property
|
|
def alignment(self):
|
|
x_sig = hash64(self.x.c, sizeof(self.x.c[0]) * self.x.length, 0)
|
|
y_sig = hash64(self.y.c, sizeof(self.y.c[0]) * self.y.length, 0)
|
|
if self._cached_alignment is None:
|
|
words_x = [token.text for token in self.x]
|
|
words_y = [token.text for token in self.y]
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
self._cached_words_x = words_x
|
|
self._cached_words_y = words_y
|
|
self._cached_alignment = Alignment.from_strings(words_x, words_y)
|
|
return self._cached_alignment
|
|
elif self._x_sig == x_sig and self._y_sig == y_sig:
|
|
# If we have a cached alignment, check whether the cache is invalid
|
|
# due to retokenization. To make this check fast in loops, we first
|
|
# check a hash of the TokenC arrays.
|
|
return self._cached_alignment
|
|
else:
|
|
words_x = [token.text for token in self.x]
|
|
words_y = [token.text for token in self.y]
|
|
if words_x == self._cached_words_x and words_y == self._cached_words_y:
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
return self._cached_alignment
|
|
else:
|
|
self._cached_alignment = Alignment.from_strings(words_x, words_y)
|
|
self._cached_words_x = words_x
|
|
self._cached_words_y = words_y
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
return self._cached_alignment
|
|
|
|
|
|
def _get_aligned_vectorized(self, align, gold_values):
|
|
# Fast path for Doc attributes/fields that are predominantly a single value,
|
|
# i.e., TAG, POS, MORPH.
|
|
x2y_single_toks = []
|
|
x2y_single_toks_i = []
|
|
|
|
x2y_multiple_toks = []
|
|
x2y_multiple_toks_i = []
|
|
|
|
# Gather indices of gold tokens aligned to the candidate tokens into two buckets.
|
|
# Bucket 1: All tokens that have a one-to-one alignment.
|
|
# Bucket 2: All tokens that have a one-to-many alignment.
|
|
for idx, token in enumerate(self.predicted):
|
|
aligned_gold_i = align[token.i]
|
|
aligned_gold_len = len(aligned_gold_i)
|
|
|
|
if aligned_gold_len == 1:
|
|
x2y_single_toks.append(aligned_gold_i.item())
|
|
x2y_single_toks_i.append(idx)
|
|
elif aligned_gold_len > 1:
|
|
x2y_multiple_toks.append(aligned_gold_i)
|
|
x2y_multiple_toks_i.append(idx)
|
|
|
|
# Map elements of the first bucket directly to the output array.
|
|
output = numpy.full(len(self.predicted), None)
|
|
output[x2y_single_toks_i] = gold_values[x2y_single_toks].squeeze()
|
|
|
|
# Collapse many-to-one alignments into one-to-one alignments if they
|
|
# share the same value. Map to None in all other cases.
|
|
for i in range(len(x2y_multiple_toks)):
|
|
aligned_gold_values = gold_values[x2y_multiple_toks[i]]
|
|
|
|
# If all aligned tokens have the same value, use it.
|
|
if all_equal(aligned_gold_values):
|
|
x2y_multiple_toks[i] = aligned_gold_values[0].item()
|
|
else:
|
|
x2y_multiple_toks[i] = None
|
|
|
|
output[x2y_multiple_toks_i] = x2y_multiple_toks
|
|
|
|
return output.tolist()
|
|
|
|
|
|
def _get_aligned_non_vectorized(self, align, gold_values):
|
|
# Slower path for fields that return multiple values (resulting
|
|
# in ragged arrays that cannot be vectorized trivially).
|
|
output = [None] * len(self.predicted)
|
|
|
|
for token in self.predicted:
|
|
aligned_gold_i = align[token.i]
|
|
values = gold_values[aligned_gold_i].ravel()
|
|
if len(values) == 1:
|
|
output[token.i] = values.item()
|
|
elif all_equal(values):
|
|
# If all aligned tokens have the same value, use it.
|
|
output[token.i] = values[0].item()
|
|
|
|
return output
|
|
|
|
|
|
def get_aligned(self, field, as_string=False):
|
|
"""Return an aligned array for a token attribute."""
|
|
align = self.alignment.x2y
|
|
gold_values = self.reference.to_array([field])
|
|
|
|
if len(gold_values.shape) == 1:
|
|
output = self._get_aligned_vectorized(align, gold_values)
|
|
else:
|
|
output = self._get_aligned_non_vectorized(align, gold_values)
|
|
|
|
vocab = self.reference.vocab
|
|
if as_string and field not in ["ENT_IOB", "SENT_START"]:
|
|
output = [vocab.strings[o] if o is not None else o for o in output]
|
|
|
|
return output
|
|
|
|
def get_aligned_parse(self, projectivize=True):
|
|
cand_to_gold = self.alignment.x2y
|
|
gold_to_cand = self.alignment.y2x
|
|
heads = [token.head.i for token in self.y]
|
|
deps = [token.dep_ for token in self.y]
|
|
|
|
if projectivize:
|
|
proj_heads, proj_deps = nonproj.projectivize(heads, deps)
|
|
has_deps = [token.has_dep() for token in self.y]
|
|
has_heads = [token.has_head() for token in self.y]
|
|
|
|
# ensure that missing data remains missing
|
|
heads = [h if has_heads[i] else heads[i] for i, h in enumerate(proj_heads)]
|
|
deps = [d if has_deps[i] else deps[i] for i, d in enumerate(proj_deps)]
|
|
|
|
# Select all candidate tokens that are aligned to a single gold token.
|
|
c2g_single_toks = numpy.where(cand_to_gold.lengths == 1)[0]
|
|
|
|
# Fetch all aligned gold token incides.
|
|
if c2g_single_toks.shape == cand_to_gold.lengths.shape:
|
|
# This the most likely case.
|
|
gold_i = cand_to_gold[:]
|
|
else:
|
|
gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0], otypes='i')(c2g_single_toks)
|
|
|
|
# Fetch indices of all gold heads for the aligned gold tokens.
|
|
heads = numpy.asarray(heads, dtype='i')
|
|
gold_head_i = heads[gold_i]
|
|
|
|
# Select all gold tokens that are heads of the previously selected
|
|
# gold tokens (and are aligned to a single candidate token).
|
|
g2c_len_heads = gold_to_cand.lengths[gold_head_i]
|
|
g2c_len_heads = numpy.where(g2c_len_heads == 1)[0]
|
|
g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0], otypes='i')(gold_head_i[g2c_len_heads]).squeeze()
|
|
|
|
# Update head/dep alignments with the above.
|
|
aligned_heads = numpy.full((self.x.length), None)
|
|
aligned_heads[c2g_single_toks[g2c_len_heads]] = g2c_i
|
|
|
|
deps = numpy.asarray(deps)
|
|
aligned_deps = numpy.full((self.x.length), None)
|
|
aligned_deps[c2g_single_toks] = deps[gold_i]
|
|
|
|
return aligned_heads.tolist(), aligned_deps.tolist()
|
|
|
|
def get_aligned_sent_starts(self):
|
|
"""Get list of SENT_START attributes aligned to the predicted tokenization.
|
|
If the reference does not have sentence starts, return a list of None values.
|
|
"""
|
|
if self.y.has_annotation("SENT_START"):
|
|
align = self.alignment.y2x
|
|
sent_starts = [False] * len(self.x)
|
|
for y_sent in self.y.sents:
|
|
x_start = int(align[y_sent.start][0])
|
|
sent_starts[x_start] = True
|
|
return sent_starts
|
|
else:
|
|
return [None] * len(self.x)
|
|
|
|
def get_aligned_spans_x2y(self, x_spans, allow_overlap=False):
|
|
return self._get_aligned_spans(self.y, x_spans, self.alignment.x2y, allow_overlap)
|
|
|
|
def get_aligned_spans_y2x(self, y_spans, allow_overlap=False):
|
|
return self._get_aligned_spans(self.x, y_spans, self.alignment.y2x, allow_overlap)
|
|
|
|
def _get_aligned_spans(self, doc, spans, align, allow_overlap):
|
|
seen = set()
|
|
output = []
|
|
for span in spans:
|
|
indices = align[span.start : span.end]
|
|
if not allow_overlap:
|
|
indices = [idx for idx in indices if idx not in seen]
|
|
if len(indices) >= 1:
|
|
aligned_span = Span(doc, indices[0], indices[-1] + 1, label=span.label)
|
|
target_text = span.text.lower().strip().replace(" ", "")
|
|
our_text = aligned_span.text.lower().strip().replace(" ", "")
|
|
if our_text == target_text:
|
|
output.append(aligned_span)
|
|
seen.update(indices)
|
|
return output
|
|
|
|
def get_aligned_ents_and_ner(self):
|
|
if not self.y.has_annotation("ENT_IOB"):
|
|
return [], [None] * len(self.x)
|
|
x_ents = self.get_aligned_spans_y2x(self.y.ents, allow_overlap=False)
|
|
# Default to 'None' for missing values
|
|
x_tags = offsets_to_biluo_tags(
|
|
self.x,
|
|
[(e.start_char, e.end_char, e.label_) for e in x_ents],
|
|
missing=None
|
|
)
|
|
# Now fill the tokens we can align to O.
|
|
O = 2 # I=1, O=2, B=3
|
|
for i, ent_iob in enumerate(self.get_aligned("ENT_IOB")):
|
|
if x_tags[i] is None:
|
|
if ent_iob == O:
|
|
x_tags[i] = "O"
|
|
elif self.x[i].is_space:
|
|
x_tags[i] = "O"
|
|
return x_ents, x_tags
|
|
|
|
def get_aligned_ner(self):
|
|
x_ents, x_tags = self.get_aligned_ents_and_ner()
|
|
return x_tags
|
|
|
|
def get_matching_ents(self, check_label=True):
|
|
"""Return entities that are shared between predicted and reference docs.
|
|
|
|
If `check_label` is True, entities must have matching labels to be
|
|
kept. Otherwise only the character indices need to match.
|
|
"""
|
|
gold = {}
|
|
for ent in self.reference.ents:
|
|
gold[(ent.start_char, ent.end_char)] = ent.label
|
|
|
|
keep = []
|
|
for ent in self.predicted.ents:
|
|
key = (ent.start_char, ent.end_char)
|
|
if key not in gold:
|
|
continue
|
|
|
|
if check_label and ent.label != gold[key]:
|
|
continue
|
|
|
|
keep.append(ent)
|
|
|
|
return keep
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"doc_annotation": {
|
|
"cats": dict(self.reference.cats),
|
|
"entities": doc_to_biluo_tags(self.reference),
|
|
"spans": self._spans_to_dict(),
|
|
"links": self._links_to_dict()
|
|
},
|
|
"token_annotation": {
|
|
"ORTH": [t.text for t in self.reference],
|
|
"SPACY": [bool(t.whitespace_) for t in self.reference],
|
|
"TAG": [t.tag_ for t in self.reference],
|
|
"LEMMA": [t.lemma_ for t in self.reference],
|
|
"POS": [t.pos_ for t in self.reference],
|
|
"MORPH": [str(t.morph) for t in self.reference],
|
|
"HEAD": [t.head.i for t in self.reference],
|
|
"DEP": [t.dep_ for t in self.reference],
|
|
"SENT_START": [int(bool(t.is_sent_start)) for t in self.reference]
|
|
}
|
|
}
|
|
|
|
def _spans_to_dict(self):
|
|
span_dict = {}
|
|
for key in self.reference.spans:
|
|
span_tuples = []
|
|
for span in self.reference.spans[key]:
|
|
span_tuple = (span.start_char, span.end_char, span.label_, span.kb_id_)
|
|
span_tuples.append(span_tuple)
|
|
span_dict[key] = span_tuples
|
|
|
|
return span_dict
|
|
|
|
|
|
def _links_to_dict(self):
|
|
links = {}
|
|
for ent in self.reference.ents:
|
|
if ent.kb_id_:
|
|
links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0}
|
|
return links
|
|
|
|
def split_sents(self):
|
|
""" Split the token annotations into multiple Examples based on
|
|
sent_starts and return a list of the new Examples"""
|
|
if not self.reference.has_annotation("SENT_START"):
|
|
return [self]
|
|
|
|
align = self.alignment.y2x
|
|
seen_indices = set()
|
|
output = []
|
|
for y_sent in self.reference.sents:
|
|
indices = align[y_sent.start : y_sent.end]
|
|
indices = [idx for idx in indices if idx not in seen_indices]
|
|
if indices:
|
|
x_sent = self.predicted[indices[0] : indices[-1] + 1]
|
|
output.append(Example(x_sent.as_doc(), y_sent.as_doc()))
|
|
seen_indices.update(indices)
|
|
return output
|
|
|
|
property text:
|
|
def __get__(self):
|
|
return self.x.text
|
|
|
|
def __str__(self):
|
|
return str(self.to_dict())
|
|
|
|
def __repr__(self):
|
|
return str(self.to_dict())
|
|
|
|
|
|
def _annot2array(vocab, tok_annot, doc_annot):
|
|
attrs = []
|
|
values = []
|
|
|
|
for key, value in doc_annot.items():
|
|
if value:
|
|
if key in ["entities", "cats", "spans"]:
|
|
pass
|
|
elif key == "links":
|
|
ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], tok_annot["SPACY"], value)
|
|
tok_annot["ENT_KB_ID"] = ent_kb_ids
|
|
else:
|
|
raise ValueError(Errors.E974.format(obj="doc", key=key))
|
|
|
|
for key, value in tok_annot.items():
|
|
if key not in IDS:
|
|
raise ValueError(Errors.E974.format(obj="token", key=key))
|
|
elif key in ["ORTH", "SPACY"]:
|
|
pass
|
|
elif key == "HEAD":
|
|
attrs.append(key)
|
|
values.append([h-i if h is not None else 0 for i, h in enumerate(value)])
|
|
elif key == "DEP":
|
|
attrs.append(key)
|
|
values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value])
|
|
elif key == "SENT_START":
|
|
attrs.append(key)
|
|
values.append([to_ternary_int(v) for v in value])
|
|
elif key == "MORPH":
|
|
attrs.append(key)
|
|
values.append([vocab.morphology.add(v) for v in value])
|
|
else:
|
|
attrs.append(key)
|
|
if not all(isinstance(v, str) for v in value):
|
|
types = set([type(v) for v in value])
|
|
raise TypeError(Errors.E969.format(field=key, types=types)) from None
|
|
values.append([vocab.strings.add(v) for v in value])
|
|
array = numpy.asarray(values, dtype="uint64")
|
|
return attrs, array.T
|
|
|
|
|
|
def _add_spans_to_doc(doc, spans_data):
|
|
if not isinstance(spans_data, dict):
|
|
raise ValueError(Errors.E879)
|
|
for key, span_list in spans_data.items():
|
|
spans = []
|
|
if not isinstance(span_list, list):
|
|
raise ValueError(Errors.E879)
|
|
for span_tuple in span_list:
|
|
if not isinstance(span_tuple, (list, tuple)) or len(span_tuple) < 2:
|
|
raise ValueError(Errors.E879)
|
|
start_char = span_tuple[0]
|
|
end_char = span_tuple[1]
|
|
label = 0
|
|
kb_id = 0
|
|
if len(span_tuple) > 2:
|
|
label = span_tuple[2]
|
|
if len(span_tuple) > 3:
|
|
kb_id = span_tuple[3]
|
|
span = doc.char_span(start_char, end_char, label=label, kb_id=kb_id)
|
|
spans.append(span)
|
|
doc.spans[key] = spans
|
|
|
|
|
|
def _add_entities_to_doc(doc, ner_data):
|
|
if ner_data is None:
|
|
return
|
|
elif ner_data == []:
|
|
doc.ents = []
|
|
elif not isinstance(ner_data, (list, tuple)):
|
|
raise ValueError(Errors.E973)
|
|
elif isinstance(ner_data[0], (list, tuple)):
|
|
return _add_entities_to_doc(
|
|
doc,
|
|
offsets_to_biluo_tags(doc, ner_data)
|
|
)
|
|
elif isinstance(ner_data[0], str) or ner_data[0] is None:
|
|
return _add_entities_to_doc(
|
|
doc,
|
|
biluo_tags_to_spans(doc, ner_data)
|
|
)
|
|
elif isinstance(ner_data[0], Span):
|
|
entities = []
|
|
missing = []
|
|
for span in ner_data:
|
|
if span.label:
|
|
entities.append(span)
|
|
else:
|
|
missing.append(span)
|
|
doc.set_ents(entities, missing=missing)
|
|
else:
|
|
raise ValueError(Errors.E973)
|
|
|
|
|
|
def _parse_example_dict_data(example_dict):
|
|
return (
|
|
example_dict["token_annotation"],
|
|
example_dict["doc_annotation"]
|
|
)
|
|
|
|
|
|
def _fix_legacy_dict_data(example_dict):
|
|
token_dict = example_dict.get("token_annotation", {})
|
|
doc_dict = example_dict.get("doc_annotation", {})
|
|
for key, value in example_dict.items():
|
|
if value is not None:
|
|
if key in ("token_annotation", "doc_annotation"):
|
|
pass
|
|
elif key == "ids":
|
|
pass
|
|
elif key in ("cats", "links", "spans"):
|
|
doc_dict[key] = value
|
|
elif key in ("ner", "entities"):
|
|
doc_dict["entities"] = value
|
|
else:
|
|
token_dict[key] = value
|
|
# Remap keys
|
|
remapping = {
|
|
"words": "ORTH",
|
|
"tags": "TAG",
|
|
"pos": "POS",
|
|
"lemmas": "LEMMA",
|
|
"deps": "DEP",
|
|
"heads": "HEAD",
|
|
"sent_starts": "SENT_START",
|
|
"morphs": "MORPH",
|
|
"spaces": "SPACY",
|
|
}
|
|
old_token_dict = token_dict
|
|
token_dict = {}
|
|
for key, value in old_token_dict.items():
|
|
if key in ("text", "ids", "brackets"):
|
|
pass
|
|
elif key in remapping.values():
|
|
token_dict[key] = value
|
|
elif key.lower() in remapping:
|
|
token_dict[remapping[key.lower()]] = value
|
|
else:
|
|
all_keys = set(remapping.values())
|
|
all_keys.update(remapping.keys())
|
|
raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=all_keys))
|
|
text = example_dict.get("text", example_dict.get("raw"))
|
|
if _has_field(token_dict, "ORTH") and not _has_field(token_dict, "SPACY"):
|
|
token_dict["SPACY"] = _guess_spaces(text, token_dict["ORTH"])
|
|
if "HEAD" in token_dict and "SENT_START" in token_dict:
|
|
# If heads are set, we don't also redundantly specify SENT_START.
|
|
token_dict.pop("SENT_START")
|
|
logger.debug(Warnings.W092)
|
|
return {
|
|
"token_annotation": token_dict,
|
|
"doc_annotation": doc_dict
|
|
}
|
|
|
|
def _has_field(annot, field):
|
|
if field not in annot:
|
|
return False
|
|
elif annot[field] is None:
|
|
return False
|
|
elif len(annot[field]) == 0:
|
|
return False
|
|
elif all([value is None for value in annot[field]]):
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
|
|
if isinstance(biluo_or_offsets[0], (list, tuple)):
|
|
# Convert to biluo if necessary
|
|
# This is annoying but to convert the offsets we need a Doc
|
|
# that has the target tokenization.
|
|
reference = Doc(vocab, words=words, spaces=spaces)
|
|
biluo = offsets_to_biluo_tags(reference, biluo_or_offsets)
|
|
else:
|
|
biluo = biluo_or_offsets
|
|
ent_iobs = []
|
|
ent_types = []
|
|
for iob_tag in biluo_to_iob(biluo):
|
|
if iob_tag in (None, "-"):
|
|
ent_iobs.append("")
|
|
ent_types.append("")
|
|
else:
|
|
ent_iobs.append(iob_tag.split("-")[0])
|
|
if iob_tag.startswith("I") or iob_tag.startswith("B"):
|
|
ent_types.append(remove_bilu_prefix(iob_tag))
|
|
else:
|
|
ent_types.append("")
|
|
return ent_iobs, ent_types
|
|
|
|
def _parse_links(vocab, words, spaces, links):
|
|
reference = Doc(vocab, words=words, spaces=spaces)
|
|
starts = {token.idx: token.i for token in reference}
|
|
ends = {token.idx + len(token): token.i for token in reference}
|
|
ent_kb_ids = ["" for _ in reference]
|
|
|
|
for index, annot_dict in links.items():
|
|
true_kb_ids = []
|
|
for key, value in annot_dict.items():
|
|
if value == 1.0:
|
|
true_kb_ids.append(key)
|
|
if len(true_kb_ids) > 1:
|
|
raise ValueError(Errors.E980)
|
|
|
|
if len(true_kb_ids) == 1:
|
|
start_char, end_char = index
|
|
start_token = starts.get(start_char)
|
|
end_token = ends.get(end_char)
|
|
if start_token is None or end_token is None:
|
|
raise ValueError(Errors.E981)
|
|
for i in range(start_token, end_token+1):
|
|
ent_kb_ids[i] = true_kb_ids[0]
|
|
|
|
return ent_kb_ids
|
|
|
|
|
|
def _guess_spaces(text, words):
|
|
if text is None:
|
|
return None
|
|
spaces = []
|
|
text_pos = 0
|
|
# align words with text
|
|
for word in words:
|
|
try:
|
|
word_start = text[text_pos:].index(word)
|
|
except ValueError:
|
|
spaces.append(True)
|
|
continue
|
|
text_pos += word_start + len(word)
|
|
if text_pos < len(text) and text[text_pos] == " ":
|
|
spaces.append(True)
|
|
else:
|
|
spaces.append(False)
|
|
return spaces
|