mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			124 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # encoding: utf8
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import sys
 | |
| 
 | |
| from .stop_words import STOP_WORDS
 | |
| from .tag_map import TAG_MAP
 | |
| from ...attrs import LANG
 | |
| from ...language import Language
 | |
| from ...tokens import Doc
 | |
| from ...compat import copy_reg
 | |
| from ...util import DummyTokenizer
 | |
| from ...compat import is_python3, is_python_pre_3_5
 | |
| 
 | |
| is_python_post_3_7 = is_python3 and sys.version_info[1] >= 7
 | |
| 
 | |
| # fmt: off
 | |
| if is_python_pre_3_5:
 | |
|     from collections import namedtuple
 | |
|     Morpheme = namedtuple("Morpheme", "surface lemma tag")
 | |
| elif is_python_post_3_7:
 | |
|     from dataclasses import dataclass
 | |
| 
 | |
|     @dataclass(frozen=True)
 | |
|     class Morpheme:
 | |
|         surface: str
 | |
|         lemma: str
 | |
|         tag: str
 | |
| else:
 | |
|     from typing import NamedTuple
 | |
| 
 | |
|     class Morpheme(NamedTuple):
 | |
| 
 | |
|         surface = str("")
 | |
|         lemma = str("")
 | |
|         tag = str("")
 | |
| 
 | |
| 
 | |
| def try_mecab_import():
 | |
|     try:
 | |
|         from natto import MeCab
 | |
|         return MeCab
 | |
|     except ImportError:
 | |
|         raise ImportError(
 | |
|             "Korean support requires [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
 | |
|             "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
 | |
|             "and [natto-py](https://github.com/buruzaemon/natto-py)"
 | |
|         )
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| def check_spaces(text, tokens):
 | |
|     prev_end = -1
 | |
|     start = 0
 | |
|     for token in tokens:
 | |
|         idx = text.find(token, start)
 | |
|         if prev_end > 0:
 | |
|             yield prev_end != idx
 | |
|         prev_end = idx + len(token)
 | |
|         start = prev_end
 | |
|     if start > 0:
 | |
|         yield False
 | |
| 
 | |
| 
 | |
| class KoreanTokenizer(DummyTokenizer):
 | |
|     def __init__(self, cls, nlp=None):
 | |
|         self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
 | |
|         self.Tokenizer = try_mecab_import()
 | |
| 
 | |
|     def __call__(self, text):
 | |
|         dtokens = list(self.detailed_tokens(text))
 | |
|         surfaces = [dt.surface for dt in dtokens]
 | |
|         doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
 | |
|         for token, dtoken in zip(doc, dtokens):
 | |
|             first_tag, sep, eomi_tags = dtoken.tag.partition("+")
 | |
|             token.tag_ = first_tag  # stem(어간) or pre-final(선어말 어미)
 | |
|             token.lemma_ = dtoken.lemma
 | |
|         doc.user_data["full_tags"] = [dt.tag for dt in dtokens]
 | |
|         return doc
 | |
| 
 | |
|     def detailed_tokens(self, text):
 | |
|         # 품사 태그(POS)[0], 의미 부류(semantic class)[1],	종성 유무(jongseong)[2], 읽기(reading)[3],
 | |
|         # 타입(type)[4], 첫번째 품사(start pos)[5],	마지막 품사(end pos)[6], 표현(expression)[7], *
 | |
|         with self.Tokenizer("-F%f[0],%f[7]") as tokenizer:
 | |
|             for node in tokenizer.parse(text, as_nodes=True):
 | |
|                 if node.is_eos():
 | |
|                     break
 | |
|                 surface = node.surface
 | |
|                 feature = node.feature
 | |
|                 tag, _, expr = feature.partition(",")
 | |
|                 lemma, _, remainder = expr.partition("/")
 | |
|                 if lemma == "*":
 | |
|                     lemma = surface
 | |
|                 yield Morpheme(surface, lemma, tag)
 | |
| 
 | |
| 
 | |
| class KoreanDefaults(Language.Defaults):
 | |
|     lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
 | |
|     lex_attr_getters[LANG] = lambda _text: "ko"
 | |
|     stop_words = STOP_WORDS
 | |
|     tag_map = TAG_MAP
 | |
|     writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
 | |
| 
 | |
|     @classmethod
 | |
|     def create_tokenizer(cls, nlp=None):
 | |
|         return KoreanTokenizer(cls, nlp)
 | |
| 
 | |
| 
 | |
| class Korean(Language):
 | |
|     lang = "ko"
 | |
|     Defaults = KoreanDefaults
 | |
| 
 | |
|     def make_doc(self, text):
 | |
|         return self.tokenizer(text)
 | |
| 
 | |
| 
 | |
| def pickle_korean(instance):
 | |
|     return Korean, tuple()
 | |
| 
 | |
| 
 | |
| copy_reg.pickle(Korean, pickle_korean)
 | |
| 
 | |
| __all__ = ["Korean"]
 |