mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			473 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from itertools import islice
 | |
| from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List
 | |
| from pathlib import Path
 | |
| import srsly
 | |
| import random
 | |
| from thinc.api import CosineDistance, Model, Optimizer, Config
 | |
| from thinc.api import set_dropout_rate
 | |
| import warnings
 | |
| 
 | |
| from ..kb import KnowledgeBase, Candidate
 | |
| from ..tokens import Doc
 | |
| from .pipe import Pipe, deserialize_config
 | |
| from ..language import Language
 | |
| from ..vocab import Vocab
 | |
| from ..training import Example, validate_examples
 | |
| from ..errors import Errors, Warnings
 | |
| from ..util import SimpleFrozenList
 | |
| from .. import util
 | |
| from ..scorer import Scorer
 | |
| 
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.EntityLinker.v1"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 96
 | |
| depth = 2
 | |
| embed_size = 300
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| """
 | |
| DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "entity_linker",
 | |
|     requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
 | |
|     assigns=["token.ent_kb_id"],
 | |
|     default_config={
 | |
|         "kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
 | |
|         "model": DEFAULT_NEL_MODEL,
 | |
|         "labels_discard": [],
 | |
|         "incl_prior": True,
 | |
|         "incl_context": True,
 | |
|         "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | |
|     },
 | |
|     default_score_weights={
 | |
|         "nel_micro_f": 1.0,
 | |
|         "nel_micro_r": None,
 | |
|         "nel_micro_p": None,
 | |
|     },
 | |
| )
 | |
| def make_entity_linker(
 | |
|     nlp: Language,
 | |
|     name: str,
 | |
|     model: Model,
 | |
|     kb_loader: Callable[[Vocab], KnowledgeBase],
 | |
|     *,
 | |
|     labels_discard: Iterable[str],
 | |
|     incl_prior: bool,
 | |
|     incl_context: bool,
 | |
|     get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | |
| ):
 | |
|     """Construct an EntityLinker component.
 | |
| 
 | |
|     model (Model[List[Doc], Floats2d]): A model that learns document vector
 | |
|         representations. Given a batch of Doc objects, it should return a single
 | |
|         array, with one row per item in the batch.
 | |
|     kb (KnowledgeBase): The knowledge-base to link entities to.
 | |
|     labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | |
|     incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | |
|     incl_context (bool): Whether or not to include the local context in the model.
 | |
|     """
 | |
|     return EntityLinker(
 | |
|         nlp.vocab,
 | |
|         model,
 | |
|         name,
 | |
|         kb_loader=kb_loader,
 | |
|         labels_discard=labels_discard,
 | |
|         incl_prior=incl_prior,
 | |
|         incl_context=incl_context,
 | |
|         get_candidates=get_candidates,
 | |
|     )
 | |
| 
 | |
| 
 | |
| class EntityLinker(Pipe):
 | |
|     """Pipeline component for named entity linking.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/entitylinker
 | |
|     """
 | |
| 
 | |
|     NIL = "NIL"  # string used to refer to a non-existing link
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "entity_linker",
 | |
|         *,
 | |
|         kb_loader: Callable[[Vocab], KnowledgeBase],
 | |
|         labels_discard: Iterable[str],
 | |
|         incl_prior: bool,
 | |
|         incl_context: bool,
 | |
|         get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | |
|     ) -> None:
 | |
|         """Initialize an entity linker.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
 | |
|         labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | |
|         incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | |
|         incl_context (bool): Whether or not to include the local context in the model.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         cfg = {
 | |
|             "labels_discard": list(labels_discard),
 | |
|             "incl_prior": incl_prior,
 | |
|             "incl_context": incl_context,
 | |
|         }
 | |
|         self.kb = kb_loader(self.vocab)
 | |
|         self.get_candidates = get_candidates
 | |
|         self.cfg = dict(cfg)
 | |
|         self.distance = CosineDistance(normalize=False)
 | |
|         # how many neightbour sentences to take into account
 | |
|         self.n_sents = cfg.get("n_sents", 0)
 | |
| 
 | |
|     def _require_kb(self) -> None:
 | |
|         # Raise an error if the knowledge base is not initialized.
 | |
|         if len(self.kb) == 0:
 | |
|             raise ValueError(Errors.E139.format(name=self.name))
 | |
| 
 | |
|     def initialize(
 | |
|         self,
 | |
|         get_examples: Callable[[], Iterable[Example]],
 | |
|         *,
 | |
|         nlp: Optional[Language] = None,
 | |
|     ):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#initialize
 | |
|         """
 | |
|         self._ensure_examples(get_examples)
 | |
|         self._require_kb()
 | |
|         nO = self.kb.entity_vector_length
 | |
|         doc_sample = []
 | |
|         vector_sample = []
 | |
|         for example in islice(get_examples(), 10):
 | |
|             doc_sample.append(example.x)
 | |
|             vector_sample.append(self.model.ops.alloc1f(nO))
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(vector_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(
 | |
|             X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
 | |
|         )
 | |
| 
 | |
|     def update(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         *,
 | |
|         set_annotations: bool = False,
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         """Learn from a batch of documents and gold-standard information,
 | |
|         updating the pipe's model. Delegates to predict and get_loss.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         set_annotations (bool): Whether or not to update the Example objects
 | |
|             with the predictions.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#update
 | |
|         """
 | |
|         self._require_kb()
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         if not examples:
 | |
|             return losses
 | |
|         validate_examples(examples, "EntityLinker.update")
 | |
|         sentence_docs = []
 | |
|         docs = [eg.predicted for eg in examples]
 | |
|         if set_annotations:
 | |
|             # This seems simpler than other ways to get that exact output -- but
 | |
|             # it does run the model twice :(
 | |
|             predictions = self.model.predict(docs)
 | |
|         for eg in examples:
 | |
|             sentences = [s for s in eg.reference.sents]
 | |
|             kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
 | |
|             for ent in eg.reference.ents:
 | |
|                 # KB ID of the first token is the same as the whole span
 | |
|                 kb_id = kb_ids[ent.start]
 | |
|                 if kb_id:
 | |
|                     try:
 | |
|                         # find the sentence in the list of sentences.
 | |
|                         sent_index = sentences.index(ent.sent)
 | |
|                     except AttributeError:
 | |
|                         # Catch the exception when ent.sent is None and provide a user-friendly warning
 | |
|                         raise RuntimeError(Errors.E030) from None
 | |
|                     # get n previous sentences, if there are any
 | |
|                     start_sentence = max(0, sent_index - self.n_sents)
 | |
|                     # get n posterior sentences, or as many < n as there are
 | |
|                     end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
 | |
|                     # get token positions
 | |
|                     start_token = sentences[start_sentence].start
 | |
|                     end_token = sentences[end_sentence].end
 | |
|                     # append that span as a doc to training
 | |
|                     sent_doc = eg.predicted[start_token:end_token].as_doc()
 | |
|                     sentence_docs.append(sent_doc)
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         if not sentence_docs:
 | |
|             warnings.warn(Warnings.W093.format(name="Entity Linker"))
 | |
|             return losses
 | |
|         sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
 | |
|         loss, d_scores = self.get_loss(
 | |
|             sentence_encodings=sentence_encodings, examples=examples
 | |
|         )
 | |
|         bp_context(d_scores)
 | |
|         if sgd is not None:
 | |
|             self.model.finish_update(sgd)
 | |
|         losses[self.name] += loss
 | |
|         if set_annotations:
 | |
|             self.set_annotations(docs, predictions)
 | |
|         return losses
 | |
| 
 | |
|     def get_loss(self, examples: Iterable[Example], sentence_encodings):
 | |
|         validate_examples(examples, "EntityLinker.get_loss")
 | |
|         entity_encodings = []
 | |
|         for eg in examples:
 | |
|             kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
 | |
|             for ent in eg.reference.ents:
 | |
|                 kb_id = kb_ids[ent.start]
 | |
|                 if kb_id:
 | |
|                     entity_encoding = self.kb.get_vector(kb_id)
 | |
|                     entity_encodings.append(entity_encoding)
 | |
|         entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
 | |
|         if sentence_encodings.shape != entity_encodings.shape:
 | |
|             err = Errors.E147.format(
 | |
|                 method="get_loss", msg="gold entities do not match up"
 | |
|             )
 | |
|             raise RuntimeError(err)
 | |
|         gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
 | |
|         loss = self.distance.get_loss(sentence_encodings, entity_encodings)
 | |
|         loss = loss / len(entity_encodings)
 | |
|         return loss, gradients
 | |
| 
 | |
|     def __call__(self, doc: Doc) -> Doc:
 | |
|         """Apply the pipe to a Doc.
 | |
| 
 | |
|         doc (Doc): The document to process.
 | |
|         RETURNS (Doc): The processed Doc.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#call
 | |
|         """
 | |
|         kb_ids = self.predict([doc])
 | |
|         self.set_annotations([doc], kb_ids)
 | |
|         return doc
 | |
| 
 | |
|     def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
 | |
|         """Apply the pipe to a stream of documents. This usually happens under
 | |
|         the hood when the nlp object is called on a text and all components are
 | |
|         applied to the Doc.
 | |
| 
 | |
|         stream (Iterable[Doc]): A stream of documents.
 | |
|         batch_size (int): The number of documents to buffer.
 | |
|         YIELDS (Doc): Processed documents in order.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#pipe
 | |
|         """
 | |
|         for docs in util.minibatch(stream, size=batch_size):
 | |
|             kb_ids = self.predict(docs)
 | |
|             self.set_annotations(docs, kb_ids)
 | |
|             yield from docs
 | |
| 
 | |
|     def predict(self, docs: Iterable[Doc]) -> List[str]:
 | |
|         """Apply the pipeline's model to a batch of docs, without modifying them.
 | |
|         Returns the KB IDs for each entity in each doc, including NIL if there is
 | |
|         no prediction.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to predict.
 | |
|         RETURNS (List[int]): The models prediction for each document.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#predict
 | |
|         """
 | |
|         self._require_kb()
 | |
|         entity_count = 0
 | |
|         final_kb_ids = []
 | |
|         if not docs:
 | |
|             return final_kb_ids
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         for i, doc in enumerate(docs):
 | |
|             sentences = [s for s in doc.sents]
 | |
|             if len(doc) > 0:
 | |
|                 # Looping through each sentence and each entity
 | |
|                 # This may go wrong if there are entities across sentences - which shouldn't happen normally.
 | |
|                 for sent_index, sent in enumerate(sentences):
 | |
|                     if sent.ents:
 | |
|                         # get n_neightbour sentences, clipped to the length of the document
 | |
|                         start_sentence = max(0, sent_index - self.n_sents)
 | |
|                         end_sentence = min(
 | |
|                             len(sentences) - 1, sent_index + self.n_sents
 | |
|                         )
 | |
|                         start_token = sentences[start_sentence].start
 | |
|                         end_token = sentences[end_sentence].end
 | |
|                         sent_doc = doc[start_token:end_token].as_doc()
 | |
|                         # currently, the context is the same for each entity in a sentence (should be refined)
 | |
|                         xp = self.model.ops.xp
 | |
|                         if self.cfg.get("incl_context"):
 | |
|                             sentence_encoding = self.model.predict([sent_doc])[0]
 | |
|                             sentence_encoding_t = sentence_encoding.T
 | |
|                             sentence_norm = xp.linalg.norm(sentence_encoding_t)
 | |
|                         for ent in sent.ents:
 | |
|                             entity_count += 1
 | |
|                             to_discard = self.cfg.get("labels_discard", [])
 | |
|                             if to_discard and ent.label_ in to_discard:
 | |
|                                 # ignoring this entity - setting to NIL
 | |
|                                 final_kb_ids.append(self.NIL)
 | |
|                             else:
 | |
|                                 candidates = self.get_candidates(self.kb, ent)
 | |
|                                 if not candidates:
 | |
|                                     # no prediction possible for this entity - setting to NIL
 | |
|                                     final_kb_ids.append(self.NIL)
 | |
|                                 elif len(candidates) == 1:
 | |
|                                     # shortcut for efficiency reasons: take the 1 candidate
 | |
|                                     # TODO: thresholding
 | |
|                                     final_kb_ids.append(candidates[0].entity_)
 | |
|                                 else:
 | |
|                                     random.shuffle(candidates)
 | |
|                                     # set all prior probabilities to 0 if incl_prior=False
 | |
|                                     prior_probs = xp.asarray(
 | |
|                                         [c.prior_prob for c in candidates]
 | |
|                                     )
 | |
|                                     if not self.cfg.get("incl_prior"):
 | |
|                                         prior_probs = xp.asarray(
 | |
|                                             [0.0 for _ in candidates]
 | |
|                                         )
 | |
|                                     scores = prior_probs
 | |
|                                     # add in similarity from the context
 | |
|                                     if self.cfg.get("incl_context"):
 | |
|                                         entity_encodings = xp.asarray(
 | |
|                                             [c.entity_vector for c in candidates]
 | |
|                                         )
 | |
|                                         entity_norm = xp.linalg.norm(
 | |
|                                             entity_encodings, axis=1
 | |
|                                         )
 | |
|                                         if len(entity_encodings) != len(prior_probs):
 | |
|                                             raise RuntimeError(
 | |
|                                                 Errors.E147.format(
 | |
|                                                     method="predict",
 | |
|                                                     msg="vectors not of equal length",
 | |
|                                                 )
 | |
|                                             )
 | |
|                                         # cosine similarity
 | |
|                                         sims = xp.dot(
 | |
|                                             entity_encodings, sentence_encoding_t
 | |
|                                         ) / (sentence_norm * entity_norm)
 | |
|                                         if sims.shape != prior_probs.shape:
 | |
|                                             raise ValueError(Errors.E161)
 | |
|                                         scores = (
 | |
|                                             prior_probs + sims - (prior_probs * sims)
 | |
|                                         )
 | |
|                                     # TODO: thresholding
 | |
|                                     best_index = scores.argmax().item()
 | |
|                                     best_candidate = candidates[best_index]
 | |
|                                     final_kb_ids.append(best_candidate.entity_)
 | |
|         if not (len(final_kb_ids) == entity_count):
 | |
|             err = Errors.E147.format(
 | |
|                 method="predict", msg="result variables not of equal length"
 | |
|             )
 | |
|             raise RuntimeError(err)
 | |
|         return final_kb_ids
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations
 | |
|         """
 | |
|         count_ents = len([ent for doc in docs for ent in doc.ents])
 | |
|         if count_ents != len(kb_ids):
 | |
|             raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
 | |
|         i = 0
 | |
|         for doc in docs:
 | |
|             for ent in doc.ents:
 | |
|                 kb_id = kb_ids[i]
 | |
|                 i += 1
 | |
|                 for token in ent:
 | |
|                     token.ent_kb_id_ = kb_id
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         """Score a batch of examples.
 | |
| 
 | |
|         examples (Iterable[Example]): The examples to score.
 | |
|         RETURNS (Dict[str, Any]): The scores.
 | |
| 
 | |
|         DOCS TODO: https://nightly.spacy.io/api/entity_linker#score
 | |
|         """
 | |
|         validate_examples(examples, "EntityLinker.score")
 | |
|         return Scorer.score_links(examples, negative_labels=[self.NIL])
 | |
| 
 | |
|     def to_disk(
 | |
|         self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> None:
 | |
|         """Serialize the pipe to disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#to_disk
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | |
|         serialize["vocab"] = lambda p: self.vocab.to_disk(p)
 | |
|         serialize["kb"] = lambda p: self.kb.to_disk(p)
 | |
|         serialize["model"] = lambda p: self.model.to_disk(p)
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(
 | |
|         self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> "EntityLinker":
 | |
|         """Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (EntityLinker): The modified EntityLinker object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/entitylinker#from_disk
 | |
|         """
 | |
| 
 | |
|         def load_model(p):
 | |
|             try:
 | |
|                 self.model.from_bytes(p.open("rb").read())
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
 | |
|         deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | |
|         deserialize["kb"] = lambda p: self.kb.from_disk(p)
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def rehearse(self, examples, *, sgd=None, losses=None, **config):
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         raise NotImplementedError
 |