mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			339 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True
 | |
| import warnings
 | |
| from typing import Optional, Tuple
 | |
| import srsly
 | |
| from thinc.api import set_dropout_rate, Model
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| 
 | |
| from ..training import validate_examples
 | |
| from ..errors import Errors, Warnings
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| cdef class Pipe:
 | |
|     """This class is a base class and not instantiated directly. Trainable
 | |
|     pipeline components like the EntityRecognizer or TextCategorizer inherit
 | |
|     from it and it defines the interface that components should follow to
 | |
|     function as trainable components in a spaCy pipeline.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/pipe
 | |
|     """
 | |
|     def __init__(self, vocab, model, name, **cfg):
 | |
|         """Initialize a pipeline component.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name.
 | |
|         **cfg: Additonal settings and config parameters.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self.cfg = dict(cfg)
 | |
| 
 | |
|     @classmethod
 | |
|     def __init_subclass__(cls, **kwargs):
 | |
|         """Raise a warning if an inheriting class implements 'begin_training'
 | |
|          (from v2) instead of the new 'initialize' method (from v3)"""
 | |
|         if hasattr(cls, "begin_training"):
 | |
|             warnings.warn(Warnings.W088.format(name=cls.__name__))
 | |
| 
 | |
|     @property
 | |
|     def labels(self) -> Optional[Tuple[str]]:
 | |
|         return []
 | |
| 
 | |
|     @property
 | |
|     def label_data(self):
 | |
|         """Optional JSON-serializable data that would be sufficient to recreate
 | |
|         the label set if provided to the `pipe.initialize()` method.
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     def __call__(self, Doc doc):
 | |
|         """Apply the pipe to one document. The document is modified in place,
 | |
|         and returned. This usually happens under the hood when the nlp object
 | |
|         is called on a text and all components are applied to the Doc.
 | |
| 
 | |
|         docs (Doc): The Doc to process.
 | |
|         RETURNS (Doc): The processed Doc.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#call
 | |
|         """
 | |
|         scores = self.predict([doc])
 | |
|         self.set_annotations([doc], scores)
 | |
|         return doc
 | |
| 
 | |
|     def pipe(self, stream, *, batch_size=128):
 | |
|         """Apply the pipe to a stream of documents. This usually happens under
 | |
|         the hood when the nlp object is called on a text and all components are
 | |
|         applied to the Doc.
 | |
| 
 | |
|         stream (Iterable[Doc]): A stream of documents.
 | |
|         batch_size (int): The number of documents to buffer.
 | |
|         YIELDS (Doc): Processed documents in order.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#pipe
 | |
|         """
 | |
|         for docs in util.minibatch(stream, size=batch_size):
 | |
|             scores = self.predict(docs)
 | |
|             self.set_annotations(docs, scores)
 | |
|             yield from docs
 | |
| 
 | |
|     def predict(self, docs):
 | |
|         """Apply the pipeline's model to a batch of docs, without modifying them.
 | |
|         Returns a single tensor for a batch of documents.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to predict.
 | |
|         RETURNS: Vector representations for each token in the documents.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#predict
 | |
|         """
 | |
|         raise NotImplementedError(Errors.E931.format(method="predict", name=self.name))
 | |
| 
 | |
|     def set_annotations(self, docs, scores):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         scores: The scores to assign.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#set_annotations
 | |
|         """
 | |
|         raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name))
 | |
| 
 | |
|     def update(self, examples, *, drop=0.0, set_annotations=False, sgd=None, losses=None):
 | |
|         """Learn from a batch of documents and gold-standard information,
 | |
|         updating the pipe's model. Delegates to predict and get_loss.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         set_annotations (bool): Whether or not to update the Example objects
 | |
|             with the predictions.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#update
 | |
|         """
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         if not hasattr(self, "model") or self.model in (None, True, False):
 | |
|             return losses
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         validate_examples(examples, "Pipe.update")
 | |
|         if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             return
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
 | |
|         loss, d_scores = self.get_loss(examples, scores)
 | |
|         bp_scores(d_scores)
 | |
|         if sgd not in (None, False):
 | |
|             self.model.finish_update(sgd)
 | |
|         losses[self.name] += loss
 | |
|         if set_annotations:
 | |
|             docs = [eg.predicted for eg in examples]
 | |
|             self.set_annotations(docs, scores=scores)
 | |
|         return losses
 | |
| 
 | |
|     def rehearse(self, examples, *, sgd=None, losses=None, **config):
 | |
|         """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | |
|         teach the current model to make predictions similar to an initial model,
 | |
|         to try to address the "catastrophic forgetting" problem. This feature is
 | |
|         experimental.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#rehearse
 | |
|         """
 | |
|         pass
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETUTNRS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#get_loss
 | |
|         """
 | |
|         raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name))
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         """Add an output label, to be predicted by the model. It's possible to
 | |
|         extend pretrained models with new labels, but care should be taken to
 | |
|         avoid the "catastrophic forgetting" problem.
 | |
| 
 | |
|         label (str): The label to add.
 | |
|         RETURNS (int): 0 if label is already present, otherwise 1.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#add_label
 | |
|         """
 | |
|         raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name))
 | |
| 
 | |
| 
 | |
|     def _require_labels(self) -> None:
 | |
|         """Raise an error if the component's model has no labels defined."""
 | |
|         if not self.labels or list(self.labels) == [""]:
 | |
|             raise ValueError(Errors.E143.format(name=self.name))
 | |
| 
 | |
| 
 | |
|     def _allow_extra_label(self) -> None:
 | |
|         """Raise an error if the component can not add any more labels."""
 | |
|         if self.model.has_dim("nO") and self.model.get_dim("nO") == len(self.labels):
 | |
|             if not self.is_resizable():
 | |
|                 raise ValueError(Errors.E922.format(name=self.name, nO=self.model.get_dim("nO")))
 | |
| 
 | |
| 
 | |
|     def create_optimizer(self):
 | |
|         """Create an optimizer for the pipeline component.
 | |
| 
 | |
|         RETURNS (thinc.api.Optimizer): The optimizer.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#create_optimizer
 | |
|         """
 | |
|         return util.create_default_optimizer()
 | |
| 
 | |
|     def initialize(self, get_examples, *, nlp=None):
 | |
|         """Initialize the pipe for training, using data examples if available.
 | |
|         This method needs to be implemented by each Pipe component,
 | |
|         ensuring the internal model (if available) is initialized properly
 | |
|         using the provided sample of Example objects.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#initialize
 | |
|         """
 | |
|         pass
 | |
| 
 | |
|     def _ensure_examples(self, get_examples):
 | |
|         if get_examples is None or not hasattr(get_examples, "__call__"):
 | |
|             err = Errors.E930.format(name=self.name, obj=type(get_examples))
 | |
|             raise ValueError(err)
 | |
|         if not get_examples():
 | |
|             err = Errors.E930.format(name=self.name, obj=get_examples())
 | |
|             raise ValueError(err)
 | |
| 
 | |
|     def is_resizable(self):
 | |
|         return hasattr(self, "model") and "resize_output" in self.model.attrs
 | |
| 
 | |
|     def set_output(self, nO):
 | |
|         if self.is_resizable():
 | |
|             self.model.attrs["resize_output"](self.model, nO)
 | |
|         else:
 | |
|             raise NotImplementedError(Errors.E921)
 | |
| 
 | |
|     def use_params(self, params):
 | |
|         """Modify the pipe's model, to use the given parameter values. At the
 | |
|         end of the context, the original parameters are restored.
 | |
| 
 | |
|         params (dict): The parameter values to use in the model.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#use_params
 | |
|         """
 | |
|         with self.model.use_params(params):
 | |
|             yield
 | |
| 
 | |
|     def score(self, examples, **kwargs):
 | |
|         """Score a batch of examples.
 | |
| 
 | |
|         examples (Iterable[Example]): The examples to score.
 | |
|         RETURNS (Dict[str, Any]): The scores.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#score
 | |
|         """
 | |
|         return {}
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the pipe to a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#to_bytes
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | |
|         serialize["model"] = self.model.to_bytes
 | |
|         if hasattr(self, "vocab"):
 | |
|             serialize["vocab"] = self.vocab.to_bytes
 | |
|         return util.to_bytes(serialize, exclude)
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         """Load the pipe from a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Pipe): The loaded object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#from_bytes
 | |
|         """
 | |
| 
 | |
|         def load_model(b):
 | |
|             try:
 | |
|                 self.model.from_bytes(b)
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         if hasattr(self, "vocab"):
 | |
|             deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
 | |
|         deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_bytes(bytes_data, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def to_disk(self, path, *, exclude=tuple()):
 | |
|         """Serialize the pipe to disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#to_disk
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | |
|         serialize["vocab"] = lambda p: self.vocab.to_disk(p)
 | |
|         serialize["model"] = lambda p: self.model.to_disk(p)
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(self, path, *, exclude=tuple()):
 | |
|         """Load the pipe from disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (Pipe): The loaded object.
 | |
| 
 | |
|         DOCS: https://nightly.spacy.io/api/pipe#from_disk
 | |
|         """
 | |
| 
 | |
|         def load_model(p):
 | |
|             try:
 | |
|                 self.model.from_bytes(p.open("rb").read())
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
 | |
|         deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
| 
 | |
| def deserialize_config(path):
 | |
|     if path.exists():
 | |
|         return srsly.read_json(path)
 | |
|     else:
 | |
|         return {}
 |