mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy.attrs import ORTH, LENGTH
 | |
| from spacy.tokens import Doc, Span
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.util import filter_spans
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "This is a sentence. This is another sentence. And a third."
 | |
|     heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
 | |
|     deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
 | |
|             "attr", "punct", "ROOT", "det", "npadvmod", "punct"]
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     return Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc_not_parsed(en_tokenizer):
 | |
|     text = "This is a sentence. This is another sentence. And a third."
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "i_sent,i,j,text",
 | |
|     [
 | |
|         (0, 0, len("This is a"), "This is a"),
 | |
|         (1, 0, len("This is another"), "This is another"),
 | |
|         (2, len("And "), len("And ") + len("a third"), "a third"),
 | |
|         (0, 1, 2, None),
 | |
|     ],
 | |
| )
 | |
| def test_char_span(doc, i_sent, i, j, text):
 | |
|     sents = list(doc.sents)
 | |
|     span = sents[i_sent].char_span(i, j)
 | |
|     if not text:
 | |
|         assert not span
 | |
|     else:
 | |
|         assert span.text == text
 | |
| 
 | |
| 
 | |
| def test_spans_sent_spans(doc):
 | |
|     sents = list(doc.sents)
 | |
|     assert sents[0].start == 0
 | |
|     assert sents[0].end == 5
 | |
|     assert len(sents) == 3
 | |
|     assert sum(len(sent) for sent in sents) == len(doc)
 | |
| 
 | |
| 
 | |
| def test_spans_root(doc):
 | |
|     span = doc[2:4]
 | |
|     assert len(span) == 2
 | |
|     assert span.text == "a sentence"
 | |
|     assert span.root.text == "sentence"
 | |
|     assert span.root.head.text == "is"
 | |
| 
 | |
| 
 | |
| def test_spans_string_fn(doc):
 | |
|     span = doc[0:4]
 | |
|     assert len(span) == 4
 | |
|     assert span.text == "This is a sentence"
 | |
| 
 | |
| 
 | |
| def test_spans_root2(en_tokenizer):
 | |
|     text = "through North and South Carolina"
 | |
|     heads = [0, 4, 1, 1, 0]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     assert doc[-2:].root.text == "Carolina"
 | |
| 
 | |
| 
 | |
| def test_spans_span_sent(doc, doc_not_parsed):
 | |
|     """Test span.sent property"""
 | |
|     assert len(list(doc.sents))
 | |
|     assert doc[:2].sent.root.text == "is"
 | |
|     assert doc[:2].sent.text == "This is a sentence ."
 | |
|     assert doc[6:7].sent.root.left_edge.text == "This"
 | |
|     # test on manual sbd
 | |
|     doc_not_parsed[0].is_sent_start = True
 | |
|     doc_not_parsed[5].is_sent_start = True
 | |
|     assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5]
 | |
|     assert doc_not_parsed[10:14].sent == doc_not_parsed[5:]
 | |
| 
 | |
| 
 | |
| def test_spans_lca_matrix(en_tokenizer):
 | |
|     """Test span's lca matrix generation"""
 | |
|     tokens = en_tokenizer("the lazy dog slept")
 | |
|     doc = Doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         heads=[2, 2, 3, 3],
 | |
|         deps=["dep"] * 4,
 | |
|     )
 | |
|     lca = doc[:2].get_lca_matrix()
 | |
|     assert lca.shape == (2, 2)
 | |
|     assert lca[0, 0] == 0  # the & the -> the
 | |
|     assert lca[0, 1] == -1  # the & lazy -> dog (out of span)
 | |
|     assert lca[1, 0] == -1  # lazy & the -> dog (out of span)
 | |
|     assert lca[1, 1] == 1  # lazy & lazy -> lazy
 | |
| 
 | |
|     lca = doc[1:].get_lca_matrix()
 | |
|     assert lca.shape == (3, 3)
 | |
|     assert lca[0, 0] == 0  # lazy & lazy -> lazy
 | |
|     assert lca[0, 1] == 1  # lazy & dog -> dog
 | |
|     assert lca[0, 2] == 2  # lazy & slept -> slept
 | |
| 
 | |
|     lca = doc[2:].get_lca_matrix()
 | |
|     assert lca.shape == (2, 2)
 | |
|     assert lca[0, 0] == 0  # dog & dog -> dog
 | |
|     assert lca[0, 1] == 1  # dog & slept -> slept
 | |
|     assert lca[1, 0] == 1  # slept & dog -> slept
 | |
|     assert lca[1, 1] == 1  # slept & slept -> slept
 | |
| 
 | |
| 
 | |
| def test_span_similarity_match():
 | |
|     doc = Doc(Vocab(), words=["a", "b", "a", "b"])
 | |
|     span1 = doc[:2]
 | |
|     span2 = doc[2:]
 | |
|     with pytest.warns(UserWarning):
 | |
|         assert span1.similarity(span2) == 1.0
 | |
|         assert span1.similarity(doc) == 0.0
 | |
|         assert span1[:1].similarity(doc.vocab["a"]) == 1.0
 | |
| 
 | |
| 
 | |
| def test_spans_default_sentiment(en_tokenizer):
 | |
|     """Test span.sentiment property's default averaging behaviour"""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     tokens.vocab[tokens[0].text].sentiment = 3.0
 | |
|     tokens.vocab[tokens[2].text].sentiment = -2.0
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     assert doc[:2].sentiment == 3.0 / 2
 | |
|     assert doc[-2:].sentiment == -2.0 / 2
 | |
|     assert doc[:-1].sentiment == (3.0 + -2) / 3.0
 | |
| 
 | |
| 
 | |
| def test_spans_override_sentiment(en_tokenizer):
 | |
|     """Test span.sentiment property's default averaging behaviour"""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     tokens.vocab[tokens[0].text].sentiment = 3.0
 | |
|     tokens.vocab[tokens[2].text].sentiment = -2.0
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     doc.user_span_hooks["sentiment"] = lambda span: 10.0
 | |
|     assert doc[:2].sentiment == 10.0
 | |
|     assert doc[-2:].sentiment == 10.0
 | |
|     assert doc[:-1].sentiment == 10.0
 | |
| 
 | |
| 
 | |
| def test_spans_are_hashable(en_tokenizer):
 | |
|     """Test spans can be hashed."""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     span1 = tokens[:2]
 | |
|     span2 = tokens[2:4]
 | |
|     assert hash(span1) != hash(span2)
 | |
|     span3 = tokens[0:2]
 | |
|     assert hash(span3) == hash(span1)
 | |
| 
 | |
| 
 | |
| def test_spans_by_character(doc):
 | |
|     span1 = doc[1:-2]
 | |
| 
 | |
|     # default and specified alignment mode "strict"
 | |
|     span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE")
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char, span1.end_char, label="GPE", alignment_mode="strict"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     # alignment mode "contract"
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     # alignment mode "expand"
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_span_to_array(doc):
 | |
|     span = doc[1:-2]
 | |
|     arr = span.to_array([ORTH, LENGTH])
 | |
|     assert arr.shape == (len(span), 2)
 | |
|     assert arr[0, 0] == span[0].orth
 | |
|     assert arr[0, 1] == len(span[0])
 | |
| 
 | |
| 
 | |
| def test_span_as_doc(doc):
 | |
|     span = doc[4:10]
 | |
|     span_doc = span.as_doc()
 | |
|     assert span.text == span_doc.text.strip()
 | |
|     assert isinstance(span_doc, doc.__class__)
 | |
|     assert span_doc is not doc
 | |
|     assert span_doc[0].idx == 0
 | |
| 
 | |
| 
 | |
| def test_span_as_doc_user_data(doc):
 | |
|     """Test that the user_data can be preserved (but not by default). """
 | |
|     my_key = "my_info"
 | |
|     my_value = 342
 | |
|     doc.user_data[my_key] = my_value
 | |
| 
 | |
|     span = doc[4:10]
 | |
|     span_doc_with = span.as_doc(copy_user_data=True)
 | |
|     span_doc_without = span.as_doc()
 | |
| 
 | |
|     assert doc.user_data.get(my_key, None) is my_value
 | |
|     assert span_doc_with.user_data.get(my_key, None) is my_value
 | |
|     assert span_doc_without.user_data.get(my_key, None) is None
 | |
| 
 | |
| 
 | |
| def test_span_string_label_kb_id(doc):
 | |
|     span = Span(doc, 0, 1, label="hello", kb_id="Q342")
 | |
|     assert span.label_ == "hello"
 | |
|     assert span.label == doc.vocab.strings["hello"]
 | |
|     assert span.kb_id_ == "Q342"
 | |
|     assert span.kb_id == doc.vocab.strings["Q342"]
 | |
| 
 | |
| 
 | |
| def test_span_label_readonly(doc):
 | |
|     span = Span(doc, 0, 1)
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         span.label_ = "hello"
 | |
| 
 | |
| 
 | |
| def test_span_kb_id_readonly(doc):
 | |
|     span = Span(doc, 0, 1)
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         span.kb_id_ = "Q342"
 | |
| 
 | |
| 
 | |
| def test_span_ents_property(doc):
 | |
|     """Test span.ents for the """
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings["PRODUCT"], 0, 1),
 | |
|         (doc.vocab.strings["PRODUCT"], 7, 8),
 | |
|         (doc.vocab.strings["PRODUCT"], 11, 14),
 | |
|     ]
 | |
|     assert len(list(doc.ents)) == 3
 | |
|     sentences = list(doc.sents)
 | |
|     assert len(sentences) == 3
 | |
|     assert len(sentences[0].ents) == 1
 | |
|     # First sentence, also tests start of sentence
 | |
|     assert sentences[0].ents[0].text == "This"
 | |
|     assert sentences[0].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[0].ents[0].start == 0
 | |
|     assert sentences[0].ents[0].end == 1
 | |
|     # Second sentence
 | |
|     assert len(sentences[1].ents) == 1
 | |
|     assert sentences[1].ents[0].text == "another"
 | |
|     assert sentences[1].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[1].ents[0].start == 7
 | |
|     assert sentences[1].ents[0].end == 8
 | |
|     # Third sentence ents, Also tests end of sentence
 | |
|     assert sentences[2].ents[0].text == "a third ."
 | |
|     assert sentences[2].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[2].ents[0].start == 11
 | |
|     assert sentences[2].ents[0].end == 14
 | |
| 
 | |
| 
 | |
| def test_filter_spans(doc):
 | |
|     # Test filtering duplicates
 | |
|     spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 3
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 6 and filtered[1].end == 8
 | |
|     assert filtered[2].start == 10 and filtered[2].end == 14
 | |
|     # Test filtering overlaps with longest preference
 | |
|     spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 2
 | |
|     assert len(filtered[0]) == 3
 | |
|     assert len(filtered[1]) == 5
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 5 and filtered[1].end == 10
 | |
|     # Test filtering overlaps with earlier preference for identical length
 | |
|     spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 2
 | |
|     assert len(filtered[0]) == 3
 | |
|     assert len(filtered[1]) == 5
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 5 and filtered[1].end == 10
 | |
| 
 | |
| 
 | |
| def test_span_eq_hash(doc, doc_not_parsed):
 | |
|     assert doc[0:2] == doc[0:2]
 | |
|     assert doc[0:2] != doc[1:3]
 | |
|     assert doc[0:2] != doc_not_parsed[0:2]
 | |
|     assert hash(doc[0:2]) == hash(doc[0:2])
 | |
|     assert hash(doc[0:2]) != hash(doc[1:3])
 | |
|     assert hash(doc[0:2]) != hash(doc_not_parsed[0:2])
 | |
| 
 | |
| 
 | |
| def test_span_boundaries(doc):
 | |
|     start = 1
 | |
|     end = 5
 | |
|     span = doc[start:end]
 | |
|     for i in range(start, end):
 | |
|         assert span[i - start] == doc[i]
 | |
|     with pytest.raises(IndexError):
 | |
|         span[-5]
 | |
|     with pytest.raises(IndexError):
 | |
|         span[5]
 | |
| 
 | |
| 
 | |
| def test_sent(en_tokenizer):
 | |
|     doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.")
 | |
|     span = doc[1:3]
 | |
|     assert not span.doc.has_annotation("SENT_START")
 | |
|     with pytest.raises(ValueError):
 | |
|         span.sent
 |