mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Draft lower-case augmenter * Make warning a debug log * Update lowercase augmenter, docs and tests Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			693 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy
 | |
| from spacy.training import offsets_to_biluo_tags, biluo_tags_to_offsets, Alignment
 | |
| from spacy.training import biluo_tags_to_spans, iob_to_biluo
 | |
| from spacy.training import Corpus, docs_to_json, Example
 | |
| from spacy.training.converters import json_to_docs
 | |
| from spacy.lang.en import English
 | |
| from spacy.tokens import Doc, DocBin
 | |
| from spacy.util import get_words_and_spaces, minibatch
 | |
| from thinc.api import compounding
 | |
| import pytest
 | |
| import srsly
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc():
 | |
|     nlp = English()  # make sure we get a new vocab every time
 | |
|     # fmt: off
 | |
|     words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | |
|     morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
 | |
|               "", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "",
 | |
|               "NounType=prop|Number=sing", "PunctType=peri"]
 | |
|     # head of '.' is intentionally nonprojective for testing
 | |
|     heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
 | |
|     deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | |
|     lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     ents = ["O"] * len(words)
 | |
|     ents[0] = "B-PERSON"
 | |
|     ents[1] = "I-PERSON"
 | |
|     ents[5] = "B-LOC"
 | |
|     ents[6] = "I-LOC"
 | |
|     ents[8] = "B-GPE"
 | |
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | |
|     # fmt: on
 | |
|     doc = Doc(
 | |
|         nlp.vocab,
 | |
|         words=words,
 | |
|         tags=tags,
 | |
|         pos=pos,
 | |
|         morphs=morphs,
 | |
|         heads=heads,
 | |
|         deps=deps,
 | |
|         lemmas=lemmas,
 | |
|         ents=ents,
 | |
|     )
 | |
|     doc.cats = cats
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture()
 | |
| def merged_dict():
 | |
|     return {
 | |
|         "ids": [1, 2, 3, 4, 5, 6, 7],
 | |
|         "words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
 | |
|         "spaces": [True, True, True, True, True, True, False],
 | |
|         "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
 | |
|         "sent_starts": [1, 0, 0, 1, 0, 0, 0],
 | |
|     }
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     nlp = English()
 | |
|     return nlp.vocab
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_U(en_vocab):
 | |
|     words = ["I", "flew", "to", "London", "."]
 | |
|     spaces = [True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to London"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "."]
 | |
|     spaces = [True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BIL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_overlap(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [
 | |
|         (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
 | |
|         (len("I flew to "), len("I flew to San Francisco"), "LOC"),
 | |
|     ]
 | |
|     with pytest.raises(ValueError):
 | |
|         offsets_to_biluo_tags(doc, entities)
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misalign(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley."]
 | |
|     spaces = [True, True, True, True, True, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     with pytest.warns(UserWarning):
 | |
|         tags = offsets_to_biluo_tags(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "-", "-", "-"]
 | |
| 
 | |
| 
 | |
| def test_example_constructor(en_vocab):
 | |
|     words = ["I", "like", "stuff"]
 | |
|     tags = ["NOUN", "VERB", "NOUN"]
 | |
|     tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | |
|     predicted = Doc(en_vocab, words=words)
 | |
|     reference = Doc(en_vocab, words=words)
 | |
|     reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | |
|     example = Example(predicted, reference)
 | |
|     tags = example.get_aligned("TAG", as_string=True)
 | |
|     assert tags == ["NOUN", "VERB", "NOUN"]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_tags(en_vocab):
 | |
|     words = ["I", "like", "stuff"]
 | |
|     tags = ["NOUN", "VERB", "NOUN"]
 | |
|     predicted = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(predicted, {"TAGS": tags})
 | |
|     tags = example.get_aligned("TAG", as_string=True)
 | |
|     assert tags == ["NOUN", "VERB", "NOUN"]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_no_ner(en_vocab):
 | |
|     words = ["a", "b", "c", "d"]
 | |
|     spaces = [True, True, False, True]
 | |
|     predicted = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     example = Example.from_dict(predicted, {"words": words})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, None, None]
 | |
| 
 | |
| 
 | |
| def test_example_from_dict_some_ner(en_vocab):
 | |
|     words = ["a", "b", "c", "d"]
 | |
|     spaces = [True, True, False, True]
 | |
|     predicted = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     example = Example.from_dict(
 | |
|         predicted, {"words": words, "entities": ["U-LOC", None, None, None]}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["U-LOC", None, None, None]
 | |
| 
 | |
| 
 | |
| @pytest.mark.filterwarnings("ignore::UserWarning")
 | |
| def test_json_to_docs_no_ner(en_vocab):
 | |
|     data = [
 | |
|         {
 | |
|             "id": 1,
 | |
|             "paragraphs": [
 | |
|                 {
 | |
|                     "sentences": [
 | |
|                         {
 | |
|                             "tokens": [
 | |
|                                 {"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."},
 | |
|                                 {
 | |
|                                     "dep": "nsubj",
 | |
|                                     "head": 1,
 | |
|                                     "tag": "NNP",
 | |
|                                     "orth": "Haag",
 | |
|                                 },
 | |
|                                 {
 | |
|                                     "dep": "ROOT",
 | |
|                                     "head": 0,
 | |
|                                     "tag": "VBZ",
 | |
|                                     "orth": "plays",
 | |
|                                 },
 | |
|                                 {
 | |
|                                     "dep": "dobj",
 | |
|                                     "head": -1,
 | |
|                                     "tag": "NNP",
 | |
|                                     "orth": "Elianti",
 | |
|                                 },
 | |
|                                 {"dep": "punct", "head": -2, "tag": ".", "orth": "."},
 | |
|                             ]
 | |
|                         }
 | |
|                     ]
 | |
|                 }
 | |
|             ],
 | |
|         }
 | |
|     ]
 | |
|     docs = json_to_docs(data)
 | |
|     assert len(docs) == 1
 | |
|     for doc in docs:
 | |
|         assert not doc.has_annotation("ENT_IOB")
 | |
|     for token in doc:
 | |
|         assert token.ent_iob == 0
 | |
|     eg = Example(
 | |
|         Doc(
 | |
|             doc.vocab,
 | |
|             words=[w.text for w in doc],
 | |
|             spaces=[bool(w.whitespace_) for w in doc],
 | |
|         ),
 | |
|         doc,
 | |
|     )
 | |
|     ner_tags = eg.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, None, None, None]
 | |
| 
 | |
| 
 | |
| def test_split_sentences(en_vocab):
 | |
|     # fmt: off
 | |
|     words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
 | |
|     gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
 | |
|     sent_starts = [True, False, False, False, False, False, True, False, False, False]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | |
|     assert example.text == "I flew to San Francisco Valley had loads of fun "
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "I flew to San Francisco Valley "
 | |
|     assert split_examples[1].text == "had loads of fun "
 | |
|     # fmt: off
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
 | |
|     gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
 | |
|     sent_starts = [True, False, False, False, False, True, False, False]
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
 | |
|     assert example.text == "I flew to San Francisco Valley had loads of fun "
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "I flew to San Francisco Valley "
 | |
|     assert split_examples[1].text == "had loads of fun "
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     spaces = [True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs"), "PERSON"),  # "Mrs" is a Person
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", None, "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
|     assert ner_tags == expected
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
|     entities = [
 | |
|         (len("Mr and "), len("Mr and Mrs Smith"), "PERSON"),  # "Mrs Smith" is a PERSON
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
 | |
|     example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
 | |
|     # additional whitespace tokens in GoldParse words
 | |
|     words, spaces = get_words_and_spaces(
 | |
|         ["I", "flew", "to", "San Francisco", "Valley", "."],
 | |
|         "I flew  to San Francisco Valley.",
 | |
|     )
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "I flew  to "
 | |
|     entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
 | |
|     gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
 | |
|     gold_spaces = [True, True, False, True, False, False]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_4791(en_vocab, en_tokenizer):
 | |
|     doc = en_tokenizer("I'll return the ₹54 amount")
 | |
|     gold_words = ["I", "'ll", "return", "the", "₹", "54", "amount"]
 | |
|     gold_spaces = [False, True, True, True, False, True, False]
 | |
|     entities = [(16, 19, "MONEY")]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"]
 | |
| 
 | |
|     doc = en_tokenizer("I'll return the $54 amount")
 | |
|     gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"]
 | |
|     gold_spaces = [False, True, True, True, False, True, False]
 | |
|     entities = [(16, 19, "MONEY")]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"]
 | |
| 
 | |
| 
 | |
| def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
 | |
|     text = "I flew to Silicon Valley via London."
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
 | |
|     doc = en_tokenizer(text)
 | |
|     biluo_tags_converted = offsets_to_biluo_tags(doc, offsets)
 | |
|     assert biluo_tags_converted == biluo_tags
 | |
|     offsets_converted = biluo_tags_to_offsets(doc, biluo_tags)
 | |
|     offsets_converted = [ent for ent in offsets if ent[2]]
 | |
|     assert offsets_converted == offsets
 | |
| 
 | |
| 
 | |
| def test_biluo_spans(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     spans = biluo_tags_to_spans(doc, biluo_tags)
 | |
|     spans = [span for span in spans if span.label_]
 | |
|     assert len(spans) == 2
 | |
|     assert spans[0].text == "Silicon Valley"
 | |
|     assert spans[0].label_ == "LOC"
 | |
|     assert spans[1].text == "London"
 | |
|     assert spans[1].label_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_aligned_spans_y2x(en_vocab, en_tokenizer):
 | |
|     words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
 | |
|     spaces = [True, True, True, False, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [
 | |
|         (0, len("Mr and Mrs Smith"), "PERSON"),
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     # fmt: off
 | |
|     tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     # fmt: on
 | |
|     example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | |
|     ents_ref = example.reference.ents
 | |
|     assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
 | |
|     ents_y2x = example.get_aligned_spans_y2x(ents_ref)
 | |
|     assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
 | |
| 
 | |
| 
 | |
| def test_aligned_spans_x2y(en_vocab, en_tokenizer):
 | |
|     text = "Mr and Mrs Smith flew to San Francisco Valley"
 | |
|     nlp = English()
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Mr and Mrs Smith"},
 | |
|         {"label": "LOC", "pattern": "San Francisco Valley"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe("entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp(text)
 | |
|     assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
 | |
|     prefix = "Mr and Mrs Smith flew to "
 | |
|     entities = [
 | |
|         (0, len("Mr and Mrs Smith"), "PERSON"),
 | |
|         (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
 | |
|     ]
 | |
|     tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
 | |
|     example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
 | |
|     assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
 | |
|     # Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
 | |
|     ents_pred = example.predicted.ents
 | |
|     assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
 | |
|     ents_x2y = example.get_aligned_spans_x2y(ents_pred)
 | |
|     assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
 | |
| 
 | |
| 
 | |
| def test_gold_ner_missing_tags(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     example = Example.from_dict(doc, {"entities": biluo_tags})
 | |
|     assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
 | |
| 
 | |
| 
 | |
| def test_projectivize(en_tokenizer):
 | |
|     doc = en_tokenizer("He pretty quickly walks away")
 | |
|     heads = [3, 2, 3, 0, 2]
 | |
|     example = Example.from_dict(doc, {"heads": heads})
 | |
|     proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
 | |
|     nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
 | |
|     assert proj_heads == [3, 2, 3, 0, 3]
 | |
|     assert nonproj_heads == [3, 2, 3, 0, 2]
 | |
| 
 | |
| 
 | |
| def test_iob_to_biluo():
 | |
|     good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
 | |
|     good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
 | |
|     bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
 | |
|     converted_biluo = iob_to_biluo(good_iob)
 | |
|     assert good_biluo == converted_biluo
 | |
|     with pytest.raises(ValueError):
 | |
|         iob_to_biluo(bad_iob)
 | |
| 
 | |
| 
 | |
| def test_roundtrip_docs_to_docbin(doc):
 | |
|     text = doc.text
 | |
|     idx = [t.idx for t in doc]
 | |
|     tags = [t.tag_ for t in doc]
 | |
|     pos = [t.pos_ for t in doc]
 | |
|     morphs = [str(t.morph) for t in doc]
 | |
|     lemmas = [t.lemma_ for t in doc]
 | |
|     deps = [t.dep_ for t in doc]
 | |
|     heads = [t.head.i for t in doc]
 | |
|     cats = doc.cats
 | |
|     ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
 | |
|     # roundtrip to DocBin
 | |
|     with make_tempdir() as tmpdir:
 | |
|         # use a separate vocab to test that all labels are added
 | |
|         reloaded_nlp = English()
 | |
|         json_file = tmpdir / "roundtrip.json"
 | |
|         srsly.write_json(json_file, [docs_to_json(doc)])
 | |
|         output_file = tmpdir / "roundtrip.spacy"
 | |
|         DocBin(docs=[doc]).to_disk(output_file)
 | |
|         reader = Corpus(output_file)
 | |
|         reloaded_examples = list(reader(reloaded_nlp))
 | |
|     assert len(doc) == sum(len(eg) for eg in reloaded_examples)
 | |
|     reloaded_example = reloaded_examples[0]
 | |
|     assert text == reloaded_example.reference.text
 | |
|     assert idx == [t.idx for t in reloaded_example.reference]
 | |
|     assert tags == [t.tag_ for t in reloaded_example.reference]
 | |
|     assert pos == [t.pos_ for t in reloaded_example.reference]
 | |
|     assert morphs == [str(t.morph) for t in reloaded_example.reference]
 | |
|     assert lemmas == [t.lemma_ for t in reloaded_example.reference]
 | |
|     assert deps == [t.dep_ for t in reloaded_example.reference]
 | |
|     assert heads == [t.head.i for t in reloaded_example.reference]
 | |
|     assert ents == [
 | |
|         (e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents
 | |
|     ]
 | |
|     assert "TRAVEL" in reloaded_example.reference.cats
 | |
|     assert "BAKING" in reloaded_example.reference.cats
 | |
|     assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip("Outdated")
 | |
| @pytest.mark.parametrize(
 | |
|     "tokens_a,tokens_b,expected",
 | |
|     [
 | |
|         (["a", "b", "c"], ["ab", "c"], (3, [-1, -1, 1], [-1, 2], {0: 0, 1: 0}, {})),
 | |
|         (
 | |
|             ["a", "b", '"', "c"],
 | |
|             ['ab"', "c"],
 | |
|             (4, [-1, -1, -1, 1], [-1, 3], {0: 0, 1: 0, 2: 0}, {}),
 | |
|         ),
 | |
|         (["a", "bc"], ["ab", "c"], (4, [-1, -1], [-1, -1], {0: 0}, {1: 1})),
 | |
|         (
 | |
|             ["ab", "c", "d"],
 | |
|             ["a", "b", "cd"],
 | |
|             (6, [-1, -1, -1], [-1, -1, -1], {1: 2, 2: 2}, {0: 0, 1: 0}),
 | |
|         ),
 | |
|         (
 | |
|             ["a", "b", "cd"],
 | |
|             ["a", "b", "c", "d"],
 | |
|             (3, [0, 1, -1], [0, 1, -1, -1], {}, {2: 2, 3: 2}),
 | |
|         ),
 | |
|         ([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})),
 | |
|     ],
 | |
| )
 | |
| def test_align(tokens_a, tokens_b, expected):  # noqa
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b)  # noqa
 | |
|     assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected  # noqa
 | |
|     # check symmetry
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a)  # noqa
 | |
|     assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected  # noqa
 | |
| 
 | |
| 
 | |
| def test_goldparse_startswith_space(en_tokenizer):
 | |
|     text = " a"
 | |
|     doc = en_tokenizer(text)
 | |
|     gold_words = ["a"]
 | |
|     entities = ["U-DATE"]
 | |
|     deps = ["ROOT"]
 | |
|     heads = [0]
 | |
|     example = Example.from_dict(
 | |
|         doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
 | |
|     )
 | |
|     ner_tags = example.get_aligned_ner()
 | |
|     assert ner_tags == ["O", "U-DATE"]
 | |
|     assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]
 | |
| 
 | |
| 
 | |
| def test_gold_constructor():
 | |
|     """Test that the Example constructor works fine"""
 | |
|     nlp = English()
 | |
|     doc = nlp("This is a sentence")
 | |
|     example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}})
 | |
|     assert example.get_aligned("ORTH", as_string=True) == [
 | |
|         "This",
 | |
|         "is",
 | |
|         "a",
 | |
|         "sentence",
 | |
|     ]
 | |
|     assert example.reference.cats["cat1"]
 | |
|     assert not example.reference.cats["cat2"]
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit():
 | |
|     """Test tuple format"""
 | |
| 
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
| 
 | |
|     _train_tuples(train_data)
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit_invalid():
 | |
|     """Test that an error is thrown for an implicit invalid field"""
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
|     with pytest.raises(KeyError):
 | |
|         _train_tuples(train_data)
 | |
| 
 | |
| 
 | |
| def _train_tuples(train_data):
 | |
|     nlp = English()
 | |
|     ner = nlp.add_pipe("ner")
 | |
|     ner.add_label("ORG")
 | |
|     ner.add_label("LOC")
 | |
|     train_examples = []
 | |
|     for t in train_data:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
|     optimizer = nlp.initialize()
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
 | |
|         for batch in batches:
 | |
|             nlp.update(batch, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| def test_split_sents(merged_dict):
 | |
|     nlp = English()
 | |
|     example = Example.from_dict(
 | |
|         Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]),
 | |
|         merged_dict,
 | |
|     )
 | |
|     assert example.text == "Hi there everyone It is just me"
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
|     assert split_examples[0].text == "Hi there everyone "
 | |
|     assert split_examples[1].text == "It is just me"
 | |
|     token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
 | |
|     assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
 | |
|     assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
 | |
|     assert token_annotation_1["SENT_START"] == [1, 0, 0]
 | |
|     token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
 | |
|     assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
 | |
|     assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
 | |
|     assert token_annotation_2["SENT_START"] == [1, 0, 0, 0]
 | |
| 
 | |
| 
 | |
| def test_alignment():
 | |
|     other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | |
|     assert list(align.y2x.dataXd) == [0, 1, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
| 
 | |
| def test_alignment_case_insensitive():
 | |
|     other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 6]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
 | |
|     assert list(align.y2x.dataXd) == [0, 1, 2, 3, 4, 5, 6, 7]
 | |
| 
 | |
| 
 | |
| def test_alignment_complex():
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     align = Alignment.from_strings(other_tokens, spacy_tokens)
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5]
 | |
| 
 | |
| 
 | |
| def test_alignment_complex_example(en_vocab):
 | |
|     other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
 | |
|     predicted = Doc(
 | |
|         en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False]
 | |
|     )
 | |
|     reference = Doc(
 | |
|         en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False]
 | |
|     )
 | |
|     assert predicted.text == "i listened to obama's podcasts."
 | |
|     assert reference.text == "i listened to obama's podcasts."
 | |
|     example = Example(predicted, reference)
 | |
|     align = example.alignment
 | |
|     assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
 | |
|     assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
 | |
|     assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
 | |
|     assert list(align.y2x.dataXd) == [0, 0, 0, 1, 2, 3, 4, 5]
 | |
| 
 | |
| 
 | |
| def test_alignment_different_texts():
 | |
|     other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
 | |
|     with pytest.raises(ValueError):
 | |
|         Alignment.from_strings(other_tokens, spacy_tokens)
 | |
| 
 | |
| 
 | |
| def test_retokenized_docs(doc):
 | |
|     a = doc.to_array(["TAG"])
 | |
|     doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | |
|     doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
 | |
|     example = Example(doc1, doc2)
 | |
|     # fmt: off
 | |
|     expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | |
|     expected2 = [None, "sister", "flew", "to", None, "via", "London", "."]
 | |
|     # fmt: on
 | |
|     assert example.get_aligned("ORTH", as_string=True) == expected1
 | |
|     with doc1.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc1[0:2])
 | |
|         retokenizer.merge(doc1[5:7])
 | |
|     assert example.get_aligned("ORTH", as_string=True) == expected2
 |