mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Draft lower-case augmenter * Make warning a debug log * Update lowercase augmenter, docs and tests Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			205 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Callable, Iterator, Dict, List, Tuple, TYPE_CHECKING
 | |
| import random
 | |
| import itertools
 | |
| import copy
 | |
| from functools import partial
 | |
| from pydantic import BaseModel, StrictStr
 | |
| 
 | |
| from ..util import registry, logger
 | |
| from ..tokens import Doc
 | |
| from .example import Example
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from ..language import Language  # noqa: F401
 | |
| 
 | |
| 
 | |
| class OrthVariantsSingle(BaseModel):
 | |
|     tags: List[StrictStr]
 | |
|     variants: List[StrictStr]
 | |
| 
 | |
| 
 | |
| class OrthVariantsPaired(BaseModel):
 | |
|     tags: List[StrictStr]
 | |
|     variants: List[List[StrictStr]]
 | |
| 
 | |
| 
 | |
| class OrthVariants(BaseModel):
 | |
|     paired: List[OrthVariantsPaired] = {}
 | |
|     single: List[OrthVariantsSingle] = {}
 | |
| 
 | |
| 
 | |
| @registry.augmenters("spacy.orth_variants.v1")
 | |
| def create_orth_variants_augmenter(
 | |
|     level: float, lower: float, orth_variants: OrthVariants
 | |
| ) -> Callable[["Language", Example], Iterator[Example]]:
 | |
|     """Create a data augmentation callback that uses orth-variant replacement.
 | |
|     The callback can be added to a corpus or other data iterator during training.
 | |
| 
 | |
|     level (float): The percentage of texts that will be augmented.
 | |
|     lower (float): The percentage of texts that will be lowercased.
 | |
|     orth_variants (Dict[str, dict]): A dictionary containing the single and
 | |
|         paired orth variants. Typically loaded from a JSON file.
 | |
|     RETURNS (Callable[[Language, Example], Iterator[Example]]): The augmenter.
 | |
|     """
 | |
|     return partial(
 | |
|         orth_variants_augmenter, orth_variants=orth_variants, level=level, lower=lower
 | |
|     )
 | |
| 
 | |
| 
 | |
| @registry.augmenters("spacy.lower_case.v1")
 | |
| def create_lower_casing_augmenter(
 | |
|     level: float,
 | |
| ) -> Callable[["Language", Example], Iterator[Example]]:
 | |
|     """Create a data augmentation callback that converts documents to lowercase.
 | |
|     The callback can be added to a corpus or other data iterator during training.
 | |
| 
 | |
|     level (float): The percentage of texts that will be augmented.
 | |
|     RETURNS (Callable[[Language, Example], Iterator[Example]]): The augmenter.
 | |
|     """
 | |
|     return partial(lower_casing_augmenter, level=level)
 | |
| 
 | |
| 
 | |
| def dont_augment(nlp: "Language", example: Example) -> Iterator[Example]:
 | |
|     yield example
 | |
| 
 | |
| 
 | |
| def lower_casing_augmenter(
 | |
|     nlp: "Language", example: Example, *, level: float,
 | |
| ) -> Iterator[Example]:
 | |
|     if random.random() >= level:
 | |
|         yield example
 | |
|     else:
 | |
|         example_dict = example.to_dict()
 | |
|         doc = nlp.make_doc(example.text.lower())
 | |
|         example_dict["token_annotation"]["ORTH"] = [t.lower_ for t in doc]
 | |
|         yield example.from_dict(doc, example_dict)
 | |
| 
 | |
| 
 | |
| def orth_variants_augmenter(
 | |
|     nlp: "Language",
 | |
|     example: Example,
 | |
|     orth_variants: dict,
 | |
|     *,
 | |
|     level: float = 0.0,
 | |
|     lower: float = 0.0,
 | |
| ) -> Iterator[Example]:
 | |
|     if random.random() >= level:
 | |
|         yield example
 | |
|     else:
 | |
|         raw_text = example.text
 | |
|         orig_dict = example.to_dict()
 | |
|         if not orig_dict["token_annotation"]:
 | |
|             yield example
 | |
|         else:
 | |
|             variant_text, variant_token_annot = make_orth_variants(
 | |
|                 nlp,
 | |
|                 raw_text,
 | |
|                 orig_dict["token_annotation"],
 | |
|                 orth_variants,
 | |
|                 lower=raw_text is not None and random.random() < lower,
 | |
|             )
 | |
|             if variant_text:
 | |
|                 doc = nlp.make_doc(variant_text)
 | |
|             else:
 | |
|                 doc = Doc(nlp.vocab, words=variant_token_annot["ORTH"])
 | |
|                 variant_token_annot["ORTH"] = [w.text for w in doc]
 | |
|                 variant_token_annot["SPACY"] = [w.whitespace_ for w in doc]
 | |
|             orig_dict["token_annotation"] = variant_token_annot
 | |
|             yield example.from_dict(doc, orig_dict)
 | |
| 
 | |
| 
 | |
| def make_orth_variants(
 | |
|     nlp: "Language",
 | |
|     raw: str,
 | |
|     token_dict: Dict[str, List[str]],
 | |
|     orth_variants: Dict[str, List[Dict[str, List[str]]]],
 | |
|     *,
 | |
|     lower: bool = False,
 | |
| ) -> Tuple[str, Dict[str, List[str]]]:
 | |
|     orig_token_dict = copy.deepcopy(token_dict)
 | |
|     ndsv = orth_variants.get("single", [])
 | |
|     ndpv = orth_variants.get("paired", [])
 | |
|     logger.debug(f"Data augmentation: {len(ndsv)} single / {len(ndpv)} paired variants")
 | |
|     words = token_dict.get("words", [])
 | |
|     tags = token_dict.get("tags", [])
 | |
|     # keep unmodified if words or tags are not defined
 | |
|     if words and tags:
 | |
|         if lower:
 | |
|             words = [w.lower() for w in words]
 | |
|         # single variants
 | |
|         punct_choices = [random.choice(x["variants"]) for x in ndsv]
 | |
|         for word_idx in range(len(words)):
 | |
|             for punct_idx in range(len(ndsv)):
 | |
|                 if (
 | |
|                     tags[word_idx] in ndsv[punct_idx]["tags"]
 | |
|                     and words[word_idx] in ndsv[punct_idx]["variants"]
 | |
|                 ):
 | |
|                     words[word_idx] = punct_choices[punct_idx]
 | |
|         # paired variants
 | |
|         punct_choices = [random.choice(x["variants"]) for x in ndpv]
 | |
|         for word_idx in range(len(words)):
 | |
|             for punct_idx in range(len(ndpv)):
 | |
|                 if tags[word_idx] in ndpv[punct_idx]["tags"] and words[
 | |
|                     word_idx
 | |
|                 ] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]):
 | |
|                     # backup option: random left vs. right from pair
 | |
|                     pair_idx = random.choice([0, 1])
 | |
|                     # best option: rely on paired POS tags like `` / ''
 | |
|                     if len(ndpv[punct_idx]["tags"]) == 2:
 | |
|                         pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx])
 | |
|                     # next best option: rely on position in variants
 | |
|                     # (may not be unambiguous, so order of variants matters)
 | |
|                     else:
 | |
|                         for pair in ndpv[punct_idx]["variants"]:
 | |
|                             if words[word_idx] in pair:
 | |
|                                 pair_idx = pair.index(words[word_idx])
 | |
|                     words[word_idx] = punct_choices[punct_idx][pair_idx]
 | |
|         token_dict["words"] = words
 | |
|         token_dict["tags"] = tags
 | |
|     # modify raw
 | |
|     if raw is not None:
 | |
|         variants = []
 | |
|         for single_variants in ndsv:
 | |
|             variants.extend(single_variants["variants"])
 | |
|         for paired_variants in ndpv:
 | |
|             variants.extend(
 | |
|                 list(itertools.chain.from_iterable(paired_variants["variants"]))
 | |
|             )
 | |
|         # store variants in reverse length order to be able to prioritize
 | |
|         # longer matches (e.g., "---" before "--")
 | |
|         variants = sorted(variants, key=lambda x: len(x))
 | |
|         variants.reverse()
 | |
|         variant_raw = ""
 | |
|         raw_idx = 0
 | |
|         # add initial whitespace
 | |
|         while raw_idx < len(raw) and raw[raw_idx].isspace():
 | |
|             variant_raw += raw[raw_idx]
 | |
|             raw_idx += 1
 | |
|         for word in words:
 | |
|             match_found = False
 | |
|             # skip whitespace words
 | |
|             if word.isspace():
 | |
|                 match_found = True
 | |
|             # add identical word
 | |
|             elif word not in variants and raw[raw_idx:].startswith(word):
 | |
|                 variant_raw += word
 | |
|                 raw_idx += len(word)
 | |
|                 match_found = True
 | |
|             # add variant word
 | |
|             else:
 | |
|                 for variant in variants:
 | |
|                     if not match_found and raw[raw_idx:].startswith(variant):
 | |
|                         raw_idx += len(variant)
 | |
|                         variant_raw += word
 | |
|                         match_found = True
 | |
|             # something went wrong, abort
 | |
|             # (add a warning message?)
 | |
|             if not match_found:
 | |
|                 return raw, orig_token_dict
 | |
|             # add following whitespace
 | |
|             while raw_idx < len(raw) and raw[raw_idx].isspace():
 | |
|                 variant_raw += raw[raw_idx]
 | |
|                 raw_idx += 1
 | |
|         raw = variant_raw
 | |
|     return raw, token_dict
 |