spaCy/spacy/pipeline.pyx
Matthew Honnibal 4b9d69f428 Merge branch 'v2' into develop
* Move v2 parser into nn_parser.pyx
* New TokenVectorEncoder class in pipeline.pyx
* New spacy/_ml.py module

Currently the two parsers live side-by-side, until we figure out how to
organize them.
2017-05-14 01:10:23 +02:00

163 lines
5.6 KiB
Cython

# cython: infer_types=True
# cython: profile=True
# coding: utf8
from __future__ import unicode_literals
from thinc.api import chain, layerize, with_getitem
from thinc.neural import Model, Softmax
import numpy
cimport numpy as np
from .tokens.doc cimport Doc
from .syntax.parser cimport Parser
from .syntax.parser import get_templates as get_feature_templates
from .syntax.beam_parser cimport BeamParser
from .syntax.ner cimport BiluoPushDown
from .syntax.arc_eager cimport ArcEager
from .tagger import Tagger
from .gold cimport GoldParse
from thinc.api import add, layerize, chain, clone, concatenate
from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.util import to_categorical
from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.resnet import Residual
from thinc.neural._classes.batchnorm import BatchNorm as BN
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
from ._ml import flatten, get_col, doc2feats
class TokenVectorEncoder(object):
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
def __init__(self, vocab, token_vector_width, **cfg):
self.vocab = vocab
self.doc2feats = doc2feats()
self.model = self.build_model(vocab.lang, token_vector_width, **cfg)
self.tagger = chain(
self.model,
Softmax(self.vocab.morphology.n_tags,
token_vector_width))
def build_model(self, lang, width, embed_size=5000, **cfg):
cols = self.doc2feats.cols
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
lower = get_col(cols.index(LOWER)) >> (HashEmbed(width, embed_size)
+HashEmbed(width, embed_size))
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
tok2vec = (
flatten
>> (lower | prefix | suffix | shape )
>> Maxout(width, pieces=3)
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
)
return tok2vec
def pipe(self, docs):
docs = list(docs)
self.predict_tags(docs)
for doc in docs:
yield doc
def __call__(self, doc):
self.predict_tags([doc])
def begin_update(self, feats, drop=0.):
tokvecs, bp_tokvecs = self.model.begin_update(feats, drop=drop)
return tokvecs, bp_tokvecs
def predict_tags(self, docs, drop=0.):
cdef Doc doc
feats = self.doc2feats(docs)
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
scores, _ = self.tagger.begin_update(feats, drop=drop)
idx = 0
guesses = scores.argmax(axis=1)
if not isinstance(guesses, numpy.ndarray):
guesses = guesses.get()
for i, doc in enumerate(docs):
tag_ids = guesses[idx:idx+len(doc)]
for j, tag_id in enumerate(tag_ids):
doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
idx += 1
def update(self, docs_feats, golds, drop=0., sgd=None):
cdef int i, j, idx
cdef GoldParse gold
docs, feats = docs_feats
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)}
idx = 0
correct = numpy.zeros((scores.shape[0],), dtype='i')
for gold in golds:
for tag in gold.tags:
correct[idx] = tag_index[tag]
idx += 1
correct = self.model.ops.xp.array(correct)
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
finish_update(d_scores, sgd)
cdef class EntityRecognizer(Parser):
"""
Annotate named entities on Doc objects.
"""
TransitionSystem = BiluoPushDown
feature_templates = get_feature_templates('ner')
def add_label(self, label):
Parser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
cdef class BeamEntityRecognizer(BeamParser):
"""
Annotate named entities on Doc objects.
"""
TransitionSystem = BiluoPushDown
feature_templates = get_feature_templates('ner')
def add_label(self, label):
Parser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
cdef class DependencyParser(Parser):
TransitionSystem = ArcEager
feature_templates = get_feature_templates('basic')
def add_label(self, label):
Parser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
cdef class BeamDependencyParser(BeamParser):
TransitionSystem = ArcEager
feature_templates = get_feature_templates('basic')
def add_label(self, label):
Parser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'BeamDependencyParser',
'BeamEntityRecognizer', 'TokenVectorEnoder']