mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
87 lines
3.5 KiB
Python
87 lines
3.5 KiB
Python
from typing import List, Dict, Tuple
|
|
|
|
from ...pipeline import Lemmatizer
|
|
from ...tokens import Token
|
|
|
|
|
|
class PolishLemmatizer(Lemmatizer):
|
|
# This lemmatizer implements lookup lemmatization based on the Morfeusz
|
|
# dictionary (morfeusz.sgjp.pl/en) by Institute of Computer Science PAS.
|
|
# It utilizes some prefix based improvements for verb and adjectives
|
|
# lemmatization, as well as case-sensitive lemmatization for nouns.
|
|
|
|
@classmethod
|
|
def get_lookups_config(cls, mode: str) -> Tuple[List[str], List[str]]:
|
|
if mode == "pos_lookup":
|
|
# fmt: off
|
|
required = [
|
|
"lemma_lookup_adj", "lemma_lookup_adp", "lemma_lookup_adv",
|
|
"lemma_lookup_aux", "lemma_lookup_noun", "lemma_lookup_num",
|
|
"lemma_lookup_part", "lemma_lookup_pron", "lemma_lookup_verb"
|
|
]
|
|
# fmt: on
|
|
return (required, [])
|
|
else:
|
|
return super().get_lookups_config(mode)
|
|
|
|
def pos_lookup_lemmatize(self, token: Token) -> List[str]:
|
|
string = token.text
|
|
univ_pos = token.pos_
|
|
morphology = token.morph.to_dict()
|
|
lookup_pos = univ_pos.lower()
|
|
if univ_pos == "PROPN":
|
|
lookup_pos = "noun"
|
|
lookup_table = self.lookups.get_table("lemma_lookup_" + lookup_pos, {})
|
|
if univ_pos == "NOUN":
|
|
return self.lemmatize_noun(string, morphology, lookup_table)
|
|
if univ_pos != "PROPN":
|
|
string = string.lower()
|
|
if univ_pos == "ADJ":
|
|
return self.lemmatize_adj(string, morphology, lookup_table)
|
|
elif univ_pos == "VERB":
|
|
return self.lemmatize_verb(string, morphology, lookup_table)
|
|
return [lookup_table.get(string, string.lower())]
|
|
|
|
def lemmatize_adj(
|
|
self, string: str, morphology: dict, lookup_table: Dict[str, str]
|
|
) -> List[str]:
|
|
# this method utilizes different procedures for adjectives
|
|
# with 'nie' and 'naj' prefixes
|
|
if string[:3] == "nie":
|
|
search_string = string[3:]
|
|
if search_string[:3] == "naj":
|
|
naj_search_string = search_string[3:]
|
|
if naj_search_string in lookup_table:
|
|
return [lookup_table[naj_search_string]]
|
|
if search_string in lookup_table:
|
|
return [lookup_table[search_string]]
|
|
if string[:3] == "naj":
|
|
naj_search_string = string[3:]
|
|
if naj_search_string in lookup_table:
|
|
return [lookup_table[naj_search_string]]
|
|
return [lookup_table.get(string, string)]
|
|
|
|
def lemmatize_verb(
|
|
self, string: str, morphology: dict, lookup_table: Dict[str, str]
|
|
) -> List[str]:
|
|
# this method utilizes a different procedure for verbs
|
|
# with 'nie' prefix
|
|
if string[:3] == "nie":
|
|
search_string = string[3:]
|
|
if search_string in lookup_table:
|
|
return [lookup_table[search_string]]
|
|
return [lookup_table.get(string, string)]
|
|
|
|
def lemmatize_noun(
|
|
self, string: str, morphology: dict, lookup_table: Dict[str, str]
|
|
) -> List[str]:
|
|
# this method is case-sensitive, in order to work
|
|
# for incorrectly tagged proper names
|
|
if string != string.lower():
|
|
if string.lower() in lookup_table:
|
|
return [lookup_table[string.lower()]]
|
|
elif string in lookup_table:
|
|
return [lookup_table[string]]
|
|
return [string.lower()]
|
|
return [lookup_table.get(string, string)]
|