mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
c4c21cb428
* more friendly textcat errors with require_model and require_labels * update thinc version with recent bugfix
1410 lines
53 KiB
Cython
1410 lines
53 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy
|
|
import srsly
|
|
import random
|
|
from collections import OrderedDict
|
|
from thinc.api import chain
|
|
from thinc.v2v import Affine, Maxout, Softmax
|
|
from thinc.misc import LayerNorm
|
|
from thinc.neural.util import to_categorical
|
|
from thinc.neural.util import get_array_module
|
|
|
|
from spacy.kb import KnowledgeBase
|
|
from ..cli.pretrain import get_cossim_loss
|
|
from .functions import merge_subtokens
|
|
from ..tokens.doc cimport Doc
|
|
from ..syntax.nn_parser cimport Parser
|
|
from ..syntax.ner cimport BiluoPushDown
|
|
from ..syntax.arc_eager cimport ArcEager
|
|
from ..morphology cimport Morphology
|
|
from ..vocab cimport Vocab
|
|
|
|
from ..syntax import nonproj
|
|
from ..attrs import POS, ID
|
|
from ..parts_of_speech import X
|
|
from .._ml import Tok2Vec, build_tagger_model, cosine
|
|
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
|
from .._ml import build_bow_text_classifier, build_nel_encoder
|
|
from .._ml import link_vectors_to_models, zero_init, flatten
|
|
from .._ml import masked_language_model, create_default_optimizer
|
|
from ..errors import Errors, TempErrors
|
|
from .. import util
|
|
|
|
|
|
def _load_cfg(path):
|
|
if path.exists():
|
|
return srsly.read_json(path)
|
|
else:
|
|
return {}
|
|
|
|
|
|
class Pipe(object):
|
|
"""This class is not instantiated directly. Components inherit from it, and
|
|
it defines the interface that components should follow to function as
|
|
components in a spaCy analysis pipeline.
|
|
"""
|
|
|
|
name = None
|
|
|
|
@classmethod
|
|
def Model(cls, *shape, **kwargs):
|
|
"""Initialize a model for the pipe."""
|
|
raise NotImplementedError
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Create a new pipe instance."""
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, doc):
|
|
"""Apply the pipe to one document. The document is
|
|
modified in-place, and returned.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
self.require_model()
|
|
scores, tensors = self.predict([doc])
|
|
self.set_annotations([doc], scores, tensors=tensors)
|
|
return doc
|
|
|
|
def require_model(self):
|
|
"""Raise an error if the component's model is not initialized."""
|
|
if getattr(self, "model", None) in (None, True, False):
|
|
raise ValueError(Errors.E109.format(name=self.name))
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
"""Apply the pipe to a stream of documents.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
scores, tensors = self.predict(docs)
|
|
self.set_annotations(docs, scores, tensor=tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Apply the pipeline's model to a batch of docs, without
|
|
modifying them.
|
|
"""
|
|
self.require_model()
|
|
raise NotImplementedError
|
|
|
|
def set_annotations(self, docs, scores, tensors=None):
|
|
"""Modify a batch of documents, using pre-computed scores."""
|
|
raise NotImplementedError
|
|
|
|
def update(self, docs, golds, drop=0.0, sgd=None, losses=None):
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model.
|
|
|
|
Delegates to predict() and get_loss().
|
|
"""
|
|
self.require_model()
|
|
raise NotImplementedError
|
|
|
|
def rehearse(self, docs, sgd=None, losses=None, **config):
|
|
pass
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
"""Find the loss and gradient of loss for the batch of
|
|
documents and their predicted scores."""
|
|
raise NotImplementedError
|
|
|
|
def add_label(self, label):
|
|
"""Add an output label, to be predicted by the model.
|
|
|
|
It's possible to extend pre-trained models with new labels,
|
|
but care should be taken to avoid the "catastrophic forgetting"
|
|
problem.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_optimizer(self):
|
|
return create_default_optimizer(self.model.ops, **self.cfg.get("optimizer", {}))
|
|
|
|
def begin_training(
|
|
self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs
|
|
):
|
|
"""Initialize the pipe for training, using data exampes if available.
|
|
If no model has been initialized yet, the model is added."""
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def use_params(self, params):
|
|
"""Modify the pipe's model, to use the given parameter values."""
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, exclude=tuple(), **kwargs):
|
|
"""Serialize the pipe to a bytestring.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized object.
|
|
"""
|
|
serialize = OrderedDict()
|
|
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
|
if self.model not in (True, False, None):
|
|
serialize["model"] = self.model.to_bytes
|
|
serialize["vocab"] = self.vocab.to_bytes
|
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
|
|
"""Load the pipe from a bytestring."""
|
|
|
|
def load_model(b):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
|
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.model.from_bytes(b)
|
|
|
|
deserialize = OrderedDict()
|
|
deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
|
|
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
|
|
deserialize["model"] = load_model
|
|
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
"""Serialize the pipe to disk."""
|
|
serialize = OrderedDict()
|
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
|
if self.model not in (None, True, False):
|
|
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
"""Load the pipe from disk."""
|
|
|
|
def load_model(p):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
|
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.model.from_bytes(p.open("rb").read())
|
|
|
|
deserialize = OrderedDict()
|
|
deserialize["cfg"] = lambda p: self.cfg.update(_load_cfg(p))
|
|
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
|
deserialize["model"] = load_model
|
|
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
class Tensorizer(Pipe):
|
|
"""Pre-train position-sensitive vectors for tokens."""
|
|
|
|
name = "tensorizer"
|
|
|
|
@classmethod
|
|
def Model(cls, output_size=300, **cfg):
|
|
"""Create a new statistical model for the class.
|
|
|
|
width (int): Output size of the model.
|
|
embed_size (int): Number of vectors in the embedding table.
|
|
**cfg: Config parameters.
|
|
RETURNS (Model): A `thinc.neural.Model` or similar instance.
|
|
"""
|
|
input_size = util.env_opt("token_vector_width", cfg.get("input_size", 96))
|
|
return zero_init(Affine(output_size, input_size, drop_factor=0.0))
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Construct a new statistical model. Weights are not allocated on
|
|
initialisation.
|
|
|
|
vocab (Vocab): A `Vocab` instance. The model must share the same
|
|
`Vocab` instance with the `Doc` objects it will process.
|
|
model (Model): A `Model` instance or `True` to allocate one later.
|
|
**cfg: Config parameters.
|
|
|
|
EXAMPLE:
|
|
>>> from spacy.pipeline import TokenVectorEncoder
|
|
>>> tok2vec = TokenVectorEncoder(nlp.vocab)
|
|
>>> tok2vec.model = tok2vec.Model(128, 5000)
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.input_models = []
|
|
self.cfg = dict(cfg)
|
|
self.cfg.setdefault("cnn_maxout_pieces", 3)
|
|
|
|
def __call__(self, doc):
|
|
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
|
model. Vectors are set to the `Doc.tensor` attribute.
|
|
|
|
docs (Doc or iterable): One or more documents to add vectors to.
|
|
RETURNS (dict or None): Intermediate computations.
|
|
"""
|
|
tokvecses = self.predict([doc])
|
|
self.set_annotations([doc], tokvecses)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
"""Process `Doc` objects as a stream.
|
|
|
|
stream (iterator): A sequence of `Doc` objects to process.
|
|
batch_size (int): Number of `Doc` objects to group.
|
|
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
|
"""
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
tensors = self.predict(docs)
|
|
self.set_annotations(docs, tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Return a single tensor for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
RETURNS (object): Vector representations for each token in the docs.
|
|
"""
|
|
self.require_model()
|
|
inputs = self.model.ops.flatten([doc.tensor for doc in docs])
|
|
outputs = self.model(inputs)
|
|
return self.model.ops.unflatten(outputs, [len(d) for d in docs])
|
|
|
|
def set_annotations(self, docs, tensors):
|
|
"""Set the tensor attribute for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
tensors (object): Vector representation for each token in the docs.
|
|
"""
|
|
for doc, tensor in zip(docs, tensors):
|
|
if tensor.shape[0] != len(doc):
|
|
raise ValueError(Errors.E076.format(rows=tensor.shape[0], words=len(doc)))
|
|
doc.tensor = tensor
|
|
|
|
def update(self, docs, golds, state=None, drop=0.0, sgd=None, losses=None):
|
|
"""Update the model.
|
|
|
|
docs (iterable): A batch of `Doc` objects.
|
|
golds (iterable): A batch of `GoldParse` objects.
|
|
drop (float): The dropout rate.
|
|
sgd (callable): An optimizer.
|
|
RETURNS (dict): Results from the update.
|
|
"""
|
|
self.require_model()
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
inputs = []
|
|
bp_inputs = []
|
|
for tok2vec in self.input_models:
|
|
tensor, bp_tensor = tok2vec.begin_update(docs, drop=drop)
|
|
inputs.append(tensor)
|
|
bp_inputs.append(bp_tensor)
|
|
inputs = self.model.ops.xp.hstack(inputs)
|
|
scores, bp_scores = self.model.begin_update(inputs, drop=drop)
|
|
loss, d_scores = self.get_loss(docs, golds, scores)
|
|
d_inputs = bp_scores(d_scores, sgd=sgd)
|
|
d_inputs = self.model.ops.xp.split(d_inputs, len(self.input_models), axis=1)
|
|
for d_input, bp_input in zip(d_inputs, bp_inputs):
|
|
bp_input(d_input, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += loss
|
|
return loss
|
|
|
|
def get_loss(self, docs, golds, prediction):
|
|
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = self.vocab.vectors.data[ids]
|
|
d_scores = (prediction - target) / prediction.shape[0]
|
|
loss = (d_scores ** 2).sum()
|
|
return loss, d_scores
|
|
|
|
def begin_training(self, gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
|
"""Allocate models, pre-process training data and acquire an
|
|
optimizer.
|
|
|
|
gold_tuples (iterable): Gold-standard training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
if pipeline is not None:
|
|
for name, model in pipeline:
|
|
if getattr(model, "tok2vec", None):
|
|
self.input_models.append(model.tok2vec)
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
|
|
class Tagger(Pipe):
|
|
"""Pipeline component for part-of-speech tagging.
|
|
|
|
DOCS: https://spacy.io/api/tagger
|
|
"""
|
|
|
|
name = "tagger"
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self._rehearsal_model = None
|
|
self.cfg = OrderedDict(sorted(cfg.items()))
|
|
self.cfg.setdefault("cnn_maxout_pieces", 2)
|
|
|
|
@property
|
|
def labels(self):
|
|
return tuple(self.vocab.morphology.tag_names)
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
if self.model in (None, True, False):
|
|
return None
|
|
else:
|
|
return chain(self.model.tok2vec, flatten)
|
|
|
|
def __call__(self, doc):
|
|
tags, tokvecs = self.predict([doc])
|
|
self.set_annotations([doc], tags, tensors=tokvecs)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
tag_ids, tokvecs = self.predict(docs)
|
|
self.set_annotations(docs, tag_ids, tensors=tokvecs)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
self.require_model()
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle cases where there are no tokens in any docs.
|
|
n_labels = len(self.labels)
|
|
guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
|
|
tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
|
|
return guesses, tokvecs
|
|
tokvecs = self.model.tok2vec(docs)
|
|
scores = self.model.softmax(tokvecs)
|
|
guesses = []
|
|
for doc_scores in scores:
|
|
doc_guesses = doc_scores.argmax(axis=1)
|
|
if not isinstance(doc_guesses, numpy.ndarray):
|
|
doc_guesses = doc_guesses.get()
|
|
guesses.append(doc_guesses)
|
|
return guesses, tokvecs
|
|
|
|
def set_annotations(self, docs, batch_tag_ids, tensors=None):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef int idx = 0
|
|
cdef Vocab vocab = self.vocab
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
# Don't clobber preset POS tags
|
|
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
|
|
# Don't clobber preset lemmas
|
|
lemma = doc.c[j].lemma
|
|
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
|
if lemma != 0 and lemma != doc.c[j].lex.orth:
|
|
doc.c[j].lemma = lemma
|
|
idx += 1
|
|
if tensors is not None and len(tensors):
|
|
if isinstance(doc.tensor, numpy.ndarray) \
|
|
and not isinstance(tensors[i], numpy.ndarray):
|
|
doc.extend_tensor(tensors[i].get())
|
|
else:
|
|
doc.extend_tensor(tensors[i])
|
|
doc.is_tagged = True
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
|
self.require_model()
|
|
if losses is not None and self.name not in losses:
|
|
losses[self.name] = 0.
|
|
|
|
tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop)
|
|
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
|
bp_tag_scores(d_tag_scores, sgd=sgd)
|
|
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
"""Perform a 'rehearsal' update, where we try to match the output of
|
|
an initial model.
|
|
"""
|
|
if self._rehearsal_model is None:
|
|
return
|
|
guesses, backprop = self.model.begin_update(docs, drop=drop)
|
|
target = self._rehearsal_model(docs)
|
|
gradient = guesses - target
|
|
backprop(gradient, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += (gradient**2).sum()
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
scores = self.model.ops.flatten(scores)
|
|
tag_index = {tag: i for i, tag in enumerate(self.labels)}
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype="i")
|
|
guesses = scores.argmax(axis=1)
|
|
known_labels = numpy.ones((scores.shape[0], 1), dtype="f")
|
|
for gold in golds:
|
|
for tag in gold.tags:
|
|
if tag is None:
|
|
correct[idx] = guesses[idx]
|
|
elif tag in tag_index:
|
|
correct[idx] = tag_index[tag]
|
|
else:
|
|
correct[idx] = 0
|
|
known_labels[idx] = 0.
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype="i")
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
d_scores *= self.model.ops.asarray(known_labels)
|
|
loss = (d_scores**2).sum()
|
|
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
|
return float(loss), d_scores
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
|
|
**kwargs):
|
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
|
new_tag_map = OrderedDict()
|
|
for raw_text, annots_brackets in get_gold_tuples():
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for tag in tags:
|
|
if tag in orig_tag_map:
|
|
new_tag_map[tag] = orig_tag_map[tag]
|
|
else:
|
|
new_tag_map[tag] = {POS: X}
|
|
cdef Vocab vocab = self.vocab
|
|
if new_tag_map:
|
|
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
|
vocab.morphology.lemmatizer,
|
|
exc=vocab.morphology.exc)
|
|
self.cfg["pretrained_vectors"] = kwargs.get("pretrained_vectors")
|
|
if self.model is True:
|
|
for hp in ["token_vector_width", "conv_depth"]:
|
|
if hp in kwargs:
|
|
self.cfg[hp] = kwargs[hp]
|
|
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, **cfg):
|
|
if cfg.get("pretrained_dims") and not cfg.get("pretrained_vectors"):
|
|
raise ValueError(TempErrors.T008)
|
|
return build_tagger_model(n_tags, **cfg)
|
|
|
|
def add_label(self, label, values=None):
|
|
if label in self.labels:
|
|
return 0
|
|
if self.model not in (True, False, None):
|
|
# Here's how the model resizing will work, once the
|
|
# neuron-to-tag mapping is no longer controlled by
|
|
# the Morphology class, which sorts the tag names.
|
|
# The sorting makes adding labels difficult.
|
|
# smaller = self.model._layers[-1]
|
|
# larger = Softmax(len(self.labels)+1, smaller.nI)
|
|
# copy_array(larger.W[:smaller.nO], smaller.W)
|
|
# copy_array(larger.b[:smaller.nO], smaller.b)
|
|
# self.model._layers[-1] = larger
|
|
raise ValueError(TempErrors.T003)
|
|
tag_map = dict(self.vocab.morphology.tag_map)
|
|
if values is None:
|
|
values = {POS: "X"}
|
|
tag_map[label] = values
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
return 1
|
|
|
|
def use_params(self, params):
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def to_bytes(self, exclude=tuple(), **kwargs):
|
|
serialize = OrderedDict()
|
|
if self.model not in (None, True, False):
|
|
serialize["model"] = self.model.to_bytes
|
|
serialize["vocab"] = self.vocab.to_bytes
|
|
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
|
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
|
|
serialize["tag_map"] = lambda: srsly.msgpack_dumps(tag_map)
|
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
|
|
def load_model(b):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
|
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt(
|
|
"token_vector_width",
|
|
self.cfg.get("token_vector_width", 96))
|
|
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
|
self.model.from_bytes(b)
|
|
|
|
def load_tag_map(b):
|
|
tag_map = srsly.msgpack_loads(b)
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
("vocab", lambda b: self.vocab.from_bytes(b)),
|
|
("tag_map", load_tag_map),
|
|
("cfg", lambda b: self.cfg.update(srsly.json_loads(b))),
|
|
("model", lambda b: load_model(b)),
|
|
))
|
|
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
|
|
serialize = OrderedDict((
|
|
("vocab", lambda p: self.vocab.to_disk(p)),
|
|
("tag_map", lambda p: srsly.write_msgpack(p, tag_map)),
|
|
("model", lambda p: p.open("wb").write(self.model.to_bytes())),
|
|
("cfg", lambda p: srsly.write_json(p, self.cfg))
|
|
))
|
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
def load_model(p):
|
|
# TODO: Remove this once we don't have to handle previous models
|
|
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
|
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
|
with p.open("rb") as file_:
|
|
self.model.from_bytes(file_.read())
|
|
|
|
def load_tag_map(p):
|
|
tag_map = srsly.read_msgpack(p)
|
|
self.vocab.morphology = Morphology(
|
|
self.vocab.strings, tag_map=tag_map,
|
|
lemmatizer=self.vocab.morphology.lemmatizer,
|
|
exc=self.vocab.morphology.exc)
|
|
|
|
deserialize = OrderedDict((
|
|
("cfg", lambda p: self.cfg.update(_load_cfg(p))),
|
|
("vocab", lambda p: self.vocab.from_disk(p)),
|
|
("tag_map", load_tag_map),
|
|
("model", load_model),
|
|
))
|
|
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
|
|
class MultitaskObjective(Tagger):
|
|
"""Experimental: Assist training of a parser or tagger, by training a
|
|
side-objective.
|
|
"""
|
|
|
|
name = "nn_labeller"
|
|
|
|
def __init__(self, vocab, model=True, target='dep_tag_offset', **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
if target == "dep":
|
|
self.make_label = self.make_dep
|
|
elif target == "tag":
|
|
self.make_label = self.make_tag
|
|
elif target == "ent":
|
|
self.make_label = self.make_ent
|
|
elif target == "dep_tag_offset":
|
|
self.make_label = self.make_dep_tag_offset
|
|
elif target == "ent_tag":
|
|
self.make_label = self.make_ent_tag
|
|
elif target == "sent_start":
|
|
self.make_label = self.make_sent_start
|
|
elif hasattr(target, "__call__"):
|
|
self.make_label = target
|
|
else:
|
|
raise ValueError(Errors.E016)
|
|
self.cfg = dict(cfg)
|
|
self.cfg.setdefault("cnn_maxout_pieces", 2)
|
|
|
|
@property
|
|
def labels(self):
|
|
return self.cfg.setdefault("labels", {})
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg["labels"] = value
|
|
|
|
def set_annotations(self, docs, dep_ids, tensors=None):
|
|
pass
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, tok2vec=None,
|
|
sgd=None, **kwargs):
|
|
gold_tuples = nonproj.preprocess_training_data(get_gold_tuples())
|
|
for raw_text, annots_brackets in gold_tuples:
|
|
for annots, brackets in annots_brackets:
|
|
ids, words, tags, heads, deps, ents = annots
|
|
for i in range(len(ids)):
|
|
label = self.make_label(i, words, tags, heads, deps, ents)
|
|
if label is not None and label not in self.labels:
|
|
self.labels[label] = len(self.labels)
|
|
if self.model is True:
|
|
token_vector_width = util.env_opt("token_vector_width")
|
|
self.model = self.Model(len(self.labels), tok2vec=tok2vec)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
@classmethod
|
|
def Model(cls, n_tags, tok2vec=None, **cfg):
|
|
token_vector_width = util.env_opt("token_vector_width", 96)
|
|
softmax = Softmax(n_tags, token_vector_width*2)
|
|
model = chain(
|
|
tok2vec,
|
|
LayerNorm(Maxout(token_vector_width*2, token_vector_width, pieces=3)),
|
|
softmax
|
|
)
|
|
model.tok2vec = tok2vec
|
|
model.softmax = softmax
|
|
return model
|
|
|
|
def predict(self, docs):
|
|
self.require_model()
|
|
tokvecs = self.model.tok2vec(docs)
|
|
scores = self.model.softmax(tokvecs)
|
|
return tokvecs, scores
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
if len(docs) != len(golds):
|
|
raise ValueError(Errors.E077.format(value="loss", n_docs=len(docs),
|
|
n_golds=len(golds)))
|
|
cdef int idx = 0
|
|
correct = numpy.zeros((scores.shape[0],), dtype="i")
|
|
guesses = scores.argmax(axis=1)
|
|
for i, gold in enumerate(golds):
|
|
for j in range(len(docs[i])):
|
|
# Handes alignment for tokenization differences
|
|
label = self.make_label(j, gold.words, gold.tags,
|
|
gold.heads, gold.labels, gold.ents)
|
|
if label is None or label not in self.labels:
|
|
correct[idx] = guesses[idx]
|
|
else:
|
|
correct[idx] = self.labels[label]
|
|
idx += 1
|
|
correct = self.model.ops.xp.array(correct, dtype="i")
|
|
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
|
loss = (d_scores**2).sum()
|
|
return float(loss), d_scores
|
|
|
|
@staticmethod
|
|
def make_dep(i, words, tags, heads, deps, ents):
|
|
if deps[i] is None or heads[i] is None:
|
|
return None
|
|
return deps[i]
|
|
|
|
@staticmethod
|
|
def make_tag(i, words, tags, heads, deps, ents):
|
|
return tags[i]
|
|
|
|
@staticmethod
|
|
def make_ent(i, words, tags, heads, deps, ents):
|
|
if ents is None:
|
|
return None
|
|
return ents[i]
|
|
|
|
@staticmethod
|
|
def make_dep_tag_offset(i, words, tags, heads, deps, ents):
|
|
if deps[i] is None or heads[i] is None:
|
|
return None
|
|
offset = heads[i] - i
|
|
offset = min(offset, 2)
|
|
offset = max(offset, -2)
|
|
return "%s-%s:%d" % (deps[i], tags[i], offset)
|
|
|
|
@staticmethod
|
|
def make_ent_tag(i, words, tags, heads, deps, ents):
|
|
if ents is None or ents[i] is None:
|
|
return None
|
|
else:
|
|
return "%s-%s" % (tags[i], ents[i])
|
|
|
|
@staticmethod
|
|
def make_sent_start(target, words, tags, heads, deps, ents, cache=True, _cache={}):
|
|
"""A multi-task objective for representing sentence boundaries,
|
|
using BILU scheme. (O is impossible)
|
|
|
|
The implementation of this method uses an internal cache that relies
|
|
on the identity of the heads array, to avoid requiring a new piece
|
|
of gold data. You can pass cache=False if you know the cache will
|
|
do the wrong thing.
|
|
"""
|
|
assert len(words) == len(heads)
|
|
assert target < len(words), (target, len(words))
|
|
if cache:
|
|
if id(heads) in _cache:
|
|
return _cache[id(heads)][target]
|
|
else:
|
|
for key in list(_cache.keys()):
|
|
_cache.pop(key)
|
|
sent_tags = ["I-SENT"] * len(words)
|
|
_cache[id(heads)] = sent_tags
|
|
else:
|
|
sent_tags = ["I-SENT"] * len(words)
|
|
|
|
def _find_root(child):
|
|
seen = set([child])
|
|
while child is not None and heads[child] != child:
|
|
seen.add(child)
|
|
child = heads[child]
|
|
return child
|
|
|
|
sentences = {}
|
|
for i in range(len(words)):
|
|
root = _find_root(i)
|
|
if root is None:
|
|
sent_tags[i] = None
|
|
else:
|
|
sentences.setdefault(root, []).append(i)
|
|
for root, span in sorted(sentences.items()):
|
|
if len(span) == 1:
|
|
sent_tags[span[0]] = "U-SENT"
|
|
else:
|
|
sent_tags[span[0]] = "B-SENT"
|
|
sent_tags[span[-1]] = "L-SENT"
|
|
return sent_tags[target]
|
|
|
|
|
|
class ClozeMultitask(Pipe):
|
|
@classmethod
|
|
def Model(cls, vocab, tok2vec, **cfg):
|
|
output_size = vocab.vectors.data.shape[1]
|
|
output_layer = chain(
|
|
LayerNorm(Maxout(output_size, tok2vec.nO, pieces=3)),
|
|
zero_init(Affine(output_size, output_size, drop_factor=0.0))
|
|
)
|
|
model = chain(tok2vec, output_layer)
|
|
model = masked_language_model(vocab, model)
|
|
model.tok2vec = tok2vec
|
|
model.output_layer = output_layer
|
|
return model
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = cfg
|
|
|
|
def set_annotations(self, docs, dep_ids, tensors=None):
|
|
pass
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None,
|
|
tok2vec=None, sgd=None, **kwargs):
|
|
link_vectors_to_models(self.vocab)
|
|
if self.model is True:
|
|
self.model = self.Model(self.vocab, tok2vec)
|
|
X = self.model.ops.allocate((5, self.model.tok2vec.nO))
|
|
self.model.output_layer.begin_training(X)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def predict(self, docs):
|
|
self.require_model()
|
|
tokvecs = self.model.tok2vec(docs)
|
|
vectors = self.model.output_layer(tokvecs)
|
|
return tokvecs, vectors
|
|
|
|
def get_loss(self, docs, vectors, prediction):
|
|
# The simplest way to implement this would be to vstack the
|
|
# token.vector values, but that's a bit inefficient, especially on GPU.
|
|
# Instead we fetch the index into the vectors table for each of our tokens,
|
|
# and look them up all at once. This prevents data copying.
|
|
ids = self.model.ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = vectors[ids]
|
|
gradient = (prediction - target) / prediction.shape[0]
|
|
loss = (gradient**2).sum()
|
|
return float(loss), gradient
|
|
|
|
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
|
pass
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
self.require_model()
|
|
if losses is not None and self.name not in losses:
|
|
losses[self.name] = 0.
|
|
predictions, bp_predictions = self.model.begin_update(docs, drop=drop)
|
|
loss, d_predictions = self.get_loss(docs, self.vocab.vectors.data, predictions)
|
|
bp_predictions(d_predictions, sgd=sgd)
|
|
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
|
|
|
|
class TextCategorizer(Pipe):
|
|
"""Pipeline component for text classification.
|
|
|
|
DOCS: https://spacy.io/api/textcategorizer
|
|
"""
|
|
name = 'textcat'
|
|
|
|
@classmethod
|
|
def Model(cls, nr_class=1, **cfg):
|
|
embed_size = util.env_opt("embed_size", 2000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 96)
|
|
if cfg.get("architecture") == "simple_cnn":
|
|
tok2vec = Tok2Vec(token_vector_width, embed_size, **cfg)
|
|
return build_simple_cnn_text_classifier(tok2vec, nr_class, **cfg)
|
|
elif cfg.get("architecture") == "bow":
|
|
return build_bow_text_classifier(nr_class, **cfg)
|
|
else:
|
|
return build_text_classifier(nr_class, **cfg)
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
if self.model in (None, True, False):
|
|
return None
|
|
else:
|
|
return self.model.tok2vec
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self._rehearsal_model = None
|
|
self.cfg = dict(cfg)
|
|
|
|
@property
|
|
def labels(self):
|
|
return tuple(self.cfg.setdefault("labels", []))
|
|
|
|
def require_labels(self):
|
|
"""Raise an error if the component's model has no labels defined."""
|
|
if not self.labels:
|
|
raise ValueError(Errors.E143.format(name=self.name))
|
|
|
|
@labels.setter
|
|
def labels(self, value):
|
|
self.cfg["labels"] = tuple(value)
|
|
|
|
def __call__(self, doc):
|
|
scores, tensors = self.predict([doc])
|
|
self.set_annotations([doc], scores, tensors=tensors)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
scores, tensors = self.predict(docs)
|
|
self.set_annotations(docs, scores, tensors=tensors)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
self.require_model()
|
|
scores = self.model(docs)
|
|
scores = self.model.ops.asarray(scores)
|
|
tensors = [doc.tensor for doc in docs]
|
|
return scores, tensors
|
|
|
|
def set_annotations(self, docs, scores, tensors=None):
|
|
for i, doc in enumerate(docs):
|
|
for j, label in enumerate(self.labels):
|
|
doc.cats[label] = float(scores[i, j])
|
|
|
|
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
|
|
self.require_model()
|
|
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
|
loss, d_scores = self.get_loss(docs, golds, scores)
|
|
bp_scores(d_scores, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += loss
|
|
|
|
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
|
if self._rehearsal_model is None:
|
|
return
|
|
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
|
target = self._rehearsal_model(docs)
|
|
gradient = scores - target
|
|
bp_scores(gradient, sgd=sgd)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
losses[self.name] += (gradient**2).sum()
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
truths = numpy.zeros((len(golds), len(self.labels)), dtype="f")
|
|
not_missing = numpy.ones((len(golds), len(self.labels)), dtype="f")
|
|
for i, gold in enumerate(golds):
|
|
for j, label in enumerate(self.labels):
|
|
if label in gold.cats:
|
|
truths[i, j] = gold.cats[label]
|
|
else:
|
|
not_missing[i, j] = 0.
|
|
truths = self.model.ops.asarray(truths)
|
|
not_missing = self.model.ops.asarray(not_missing)
|
|
d_scores = (scores-truths) / scores.shape[0]
|
|
d_scores *= not_missing
|
|
mean_square_error = (d_scores**2).sum(axis=1).mean()
|
|
return float(mean_square_error), d_scores
|
|
|
|
def add_label(self, label):
|
|
if label in self.labels:
|
|
return 0
|
|
if self.model not in (None, True, False):
|
|
# This functionality was available previously, but was broken.
|
|
# The problem is that we resize the last layer, but the last layer
|
|
# is actually just an ensemble. We're not resizing the child layers
|
|
# - a huge problem.
|
|
raise ValueError(Errors.E116)
|
|
# smaller = self.model._layers[-1]
|
|
# larger = Affine(len(self.labels)+1, smaller.nI)
|
|
# copy_array(larger.W[:smaller.nO], smaller.W)
|
|
# copy_array(larger.b[:smaller.nO], smaller.b)
|
|
# self.model._layers[-1] = larger
|
|
self.labels = tuple(list(self.labels) + [label])
|
|
return 1
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
|
if self.model is True:
|
|
self.cfg["pretrained_vectors"] = kwargs.get("pretrained_vectors")
|
|
self.require_labels()
|
|
self.model = self.Model(len(self.labels), **self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
|
|
cdef class DependencyParser(Parser):
|
|
"""Pipeline component for dependency parsing.
|
|
|
|
DOCS: https://spacy.io/api/dependencyparser
|
|
"""
|
|
|
|
name = "parser"
|
|
TransitionSystem = ArcEager
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
return [nonproj.deprojectivize]
|
|
|
|
def add_multitask_objective(self, target):
|
|
if target == "cloze":
|
|
cloze = ClozeMultitask(self.vocab)
|
|
self._multitasks.append(cloze)
|
|
else:
|
|
labeller = MultitaskObjective(self.vocab, target=target)
|
|
self._multitasks.append(labeller)
|
|
|
|
def init_multitask_objectives(self, get_gold_tuples, pipeline, sgd=None, **cfg):
|
|
for labeller in self._multitasks:
|
|
tok2vec = self.model.tok2vec
|
|
labeller.begin_training(get_gold_tuples, pipeline=pipeline,
|
|
tok2vec=tok2vec, sgd=sgd)
|
|
|
|
def __reduce__(self):
|
|
return (DependencyParser, (self.vocab, self.moves, self.model), None, None)
|
|
|
|
@property
|
|
def labels(self):
|
|
# Get the labels from the model by looking at the available moves
|
|
return tuple(set(move.split("-")[1] for move in self.move_names))
|
|
|
|
|
|
cdef class EntityRecognizer(Parser):
|
|
"""Pipeline component for named entity recognition.
|
|
|
|
DOCS: https://spacy.io/api/entityrecognizer
|
|
"""
|
|
|
|
name = "ner"
|
|
TransitionSystem = BiluoPushDown
|
|
nr_feature = 6
|
|
|
|
def add_multitask_objective(self, target):
|
|
if target == "cloze":
|
|
cloze = ClozeMultitask(self.vocab)
|
|
self._multitasks.append(cloze)
|
|
else:
|
|
labeller = MultitaskObjective(self.vocab, target=target)
|
|
self._multitasks.append(labeller)
|
|
|
|
def init_multitask_objectives(self, get_gold_tuples, pipeline, sgd=None, **cfg):
|
|
for labeller in self._multitasks:
|
|
tok2vec = self.model.tok2vec
|
|
labeller.begin_training(get_gold_tuples, pipeline=pipeline,
|
|
tok2vec=tok2vec)
|
|
|
|
def __reduce__(self):
|
|
return (EntityRecognizer, (self.vocab, self.moves, self.model),
|
|
None, None)
|
|
|
|
@property
|
|
def labels(self):
|
|
# Get the labels from the model by looking at the available moves, e.g.
|
|
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
|
|
return tuple(set(move.split("-")[1] for move in self.move_names
|
|
if move[0] in ("B", "I", "L", "U")))
|
|
|
|
|
|
class EntityLinker(Pipe):
|
|
"""Pipeline component for named entity linking.
|
|
|
|
DOCS: TODO
|
|
"""
|
|
name = 'entity_linker'
|
|
|
|
@classmethod
|
|
def Model(cls, **cfg):
|
|
embed_width = cfg.get("embed_width", 300)
|
|
hidden_width = cfg.get("hidden_width", 128)
|
|
type_to_int = cfg.get("type_to_int", dict())
|
|
|
|
model = build_nel_encoder(embed_width=embed_width, hidden_width=hidden_width, ner_types=len(type_to_int), **cfg)
|
|
return model
|
|
|
|
def __init__(self, vocab, **cfg):
|
|
self.vocab = vocab
|
|
self.model = True
|
|
self.kb = None
|
|
self.cfg = dict(cfg)
|
|
self.sgd_context = None
|
|
|
|
def set_kb(self, kb):
|
|
self.kb = kb
|
|
|
|
def require_model(self):
|
|
# Raise an error if the component's model is not initialized.
|
|
if getattr(self, "model", None) in (None, True, False):
|
|
raise ValueError(Errors.E109.format(name=self.name))
|
|
|
|
def require_kb(self):
|
|
# Raise an error if the knowledge base is not initialized.
|
|
if getattr(self, "kb", None) in (None, True, False):
|
|
raise ValueError(Errors.E139.format(name=self.name))
|
|
|
|
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
|
self.require_kb()
|
|
self.cfg["entity_width"] = self.kb.entity_vector_length
|
|
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.sgd_context = self.create_optimizer()
|
|
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
|
|
return sgd
|
|
|
|
def update(self, docs, golds, state=None, drop=0.0, sgd=None, losses=None):
|
|
self.require_model()
|
|
self.require_kb()
|
|
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.0)
|
|
|
|
if not docs or not golds:
|
|
return 0
|
|
|
|
if len(docs) != len(golds):
|
|
raise ValueError(Errors.E077.format(value="EL training", n_docs=len(docs),
|
|
n_golds=len(golds)))
|
|
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
golds = [golds]
|
|
|
|
context_docs = []
|
|
entity_encodings = []
|
|
cats = []
|
|
priors = []
|
|
type_vectors = []
|
|
|
|
type_to_int = self.cfg.get("type_to_int", dict())
|
|
|
|
for doc, gold in zip(docs, golds):
|
|
ents_by_offset = dict()
|
|
for ent in doc.ents:
|
|
ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)] = ent
|
|
for entity in gold.links:
|
|
start, end, gold_kb = entity
|
|
mention = doc.text[start:end]
|
|
|
|
gold_ent = ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)]
|
|
assert gold_ent is not None
|
|
type_vector = [0 for i in range(len(type_to_int))]
|
|
if len(type_to_int) > 0:
|
|
type_vector[type_to_int[gold_ent.label_]] = 1
|
|
|
|
candidates = self.kb.get_candidates(mention)
|
|
random.shuffle(candidates)
|
|
nr_neg = 0
|
|
for c in candidates:
|
|
kb_id = c.entity_
|
|
entity_encoding = c.entity_vector
|
|
entity_encodings.append(entity_encoding)
|
|
context_docs.append(doc)
|
|
type_vectors.append(type_vector)
|
|
|
|
if self.cfg.get("prior_weight", 1) > 0:
|
|
priors.append([c.prior_prob])
|
|
else:
|
|
priors.append([0])
|
|
|
|
if kb_id == gold_kb:
|
|
cats.append([1])
|
|
else:
|
|
nr_neg += 1
|
|
cats.append([0])
|
|
|
|
if len(entity_encodings) > 0:
|
|
assert len(priors) == len(entity_encodings) == len(context_docs) == len(cats) == len(type_vectors)
|
|
|
|
context_encodings, bp_context = self.model.tok2vec.begin_update(context_docs, drop=drop)
|
|
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
|
|
|
|
mention_encodings = [list(context_encodings[i]) + list(entity_encodings[i]) + priors[i] + type_vectors[i]
|
|
for i in range(len(entity_encodings))]
|
|
pred, bp_mention = self.model.begin_update(self.model.ops.asarray(mention_encodings, dtype="float32"), drop=drop)
|
|
cats = self.model.ops.asarray(cats, dtype="float32")
|
|
|
|
loss, d_scores = self.get_loss(prediction=pred, golds=cats, docs=None)
|
|
mention_gradient = bp_mention(d_scores, sgd=sgd)
|
|
|
|
context_gradients = [list(x[0:self.cfg.get("context_width")]) for x in mention_gradient]
|
|
bp_context(self.model.ops.asarray(context_gradients, dtype="float32"), sgd=self.sgd_context)
|
|
|
|
if losses is not None:
|
|
losses[self.name] += loss
|
|
return loss
|
|
return 0
|
|
|
|
def get_loss(self, docs, golds, prediction):
|
|
d_scores = (prediction - golds)
|
|
loss = (d_scores ** 2).sum()
|
|
loss = loss / len(golds)
|
|
return loss, d_scores
|
|
|
|
def get_loss_old(self, docs, golds, scores):
|
|
# this loss function assumes we're only using positive examples
|
|
loss, gradients = get_cossim_loss(yh=scores, y=golds)
|
|
loss = loss / len(golds)
|
|
return loss, gradients
|
|
|
|
def __call__(self, doc):
|
|
entities, kb_ids = self.predict([doc])
|
|
self.set_annotations([doc], entities, kb_ids)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1):
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
docs = list(docs)
|
|
entities, kb_ids = self.predict(docs)
|
|
self.set_annotations(docs, entities, kb_ids)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
self.require_model()
|
|
self.require_kb()
|
|
|
|
final_entities = []
|
|
final_kb_ids = []
|
|
|
|
if not docs:
|
|
return final_entities, final_kb_ids
|
|
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
|
|
context_encodings = self.model.tok2vec(docs)
|
|
xp = get_array_module(context_encodings)
|
|
|
|
type_to_int = self.cfg.get("type_to_int", dict())
|
|
|
|
for i, doc in enumerate(docs):
|
|
if len(doc) > 0:
|
|
context_encoding = context_encodings[i]
|
|
for ent in doc.ents:
|
|
type_vector = [0 for i in range(len(type_to_int))]
|
|
if len(type_to_int) > 0:
|
|
type_vector[type_to_int[ent.label_]] = 1
|
|
|
|
candidates = self.kb.get_candidates(ent.text)
|
|
if candidates:
|
|
random.shuffle(candidates)
|
|
|
|
# this will set the prior probabilities to 0 (just like in training) if their weight is 0
|
|
prior_probs = xp.asarray([[c.prior_prob] for c in candidates])
|
|
prior_probs *= self.cfg.get("prior_weight", 1)
|
|
scores = prior_probs
|
|
|
|
if self.cfg.get("context_weight", 1) > 0:
|
|
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
|
assert len(entity_encodings) == len(prior_probs)
|
|
mention_encodings = [list(context_encoding) + list(entity_encodings[i])
|
|
+ list(prior_probs[i]) + type_vector
|
|
for i in range(len(entity_encodings))]
|
|
scores = self.model(self.model.ops.asarray(mention_encodings, dtype="float32"))
|
|
|
|
# TODO: thresholding
|
|
best_index = scores.argmax()
|
|
best_candidate = candidates[best_index]
|
|
final_entities.append(ent)
|
|
final_kb_ids.append(best_candidate.entity_)
|
|
|
|
return final_entities, final_kb_ids
|
|
|
|
def set_annotations(self, docs, entities, kb_ids=None):
|
|
for entity, kb_id in zip(entities, kb_ids):
|
|
for token in entity:
|
|
token.ent_kb_id_ = kb_id
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
serialize = OrderedDict()
|
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
|
serialize["kb"] = lambda p: self.kb.dump(p)
|
|
if self.model not in (None, True, False):
|
|
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
|
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
def load_model(p):
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
self.model.from_bytes(p.open("rb").read())
|
|
|
|
def load_kb(p):
|
|
kb = KnowledgeBase(vocab=self.vocab, entity_vector_length=self.cfg["entity_width"])
|
|
kb.load_bulk(p)
|
|
self.set_kb(kb)
|
|
|
|
deserialize = OrderedDict()
|
|
deserialize["cfg"] = lambda p: self.cfg.update(_load_cfg(p))
|
|
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
|
deserialize["kb"] = load_kb
|
|
deserialize["model"] = load_model
|
|
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|
|
|
|
def rehearse(self, docs, sgd=None, losses=None, **config):
|
|
raise NotImplementedError
|
|
|
|
def add_label(self, label):
|
|
raise NotImplementedError
|
|
|
|
|
|
class Sentencizer(object):
|
|
"""Segment the Doc into sentences using a rule-based strategy.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer
|
|
"""
|
|
|
|
name = "sentencizer"
|
|
default_punct_chars = [".", "!", "?"]
|
|
|
|
def __init__(self, punct_chars=None, **kwargs):
|
|
"""Initialize the sentencizer.
|
|
|
|
punct_chars (list): Punctuation characters to split on. Will be
|
|
serialized with the nlp object.
|
|
RETURNS (Sentencizer): The sentencizer component.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#init
|
|
"""
|
|
self.punct_chars = punct_chars or self.default_punct_chars
|
|
|
|
def __call__(self, doc):
|
|
"""Apply the sentencizer to a Doc and set Token.is_sent_start.
|
|
|
|
doc (Doc): The document to process.
|
|
RETURNS (Doc): The processed Doc.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#call
|
|
"""
|
|
start = 0
|
|
seen_period = False
|
|
for i, token in enumerate(doc):
|
|
is_in_punct_chars = token.text in self.punct_chars
|
|
token.is_sent_start = i == 0
|
|
if seen_period and not token.is_punct and not is_in_punct_chars:
|
|
doc[start].is_sent_start = True
|
|
start = token.i
|
|
seen_period = False
|
|
elif is_in_punct_chars:
|
|
seen_period = True
|
|
if start < len(doc):
|
|
doc[start].is_sent_start = True
|
|
return doc
|
|
|
|
def to_bytes(self, **kwargs):
|
|
"""Serialize the sentencizer to a bytestring.
|
|
|
|
RETURNS (bytes): The serialized object.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#to_bytes
|
|
"""
|
|
return srsly.msgpack_dumps({"punct_chars": self.punct_chars})
|
|
|
|
def from_bytes(self, bytes_data, **kwargs):
|
|
"""Load the sentencizer from a bytestring.
|
|
|
|
bytes_data (bytes): The data to load.
|
|
returns (Sentencizer): The loaded object.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#from_bytes
|
|
"""
|
|
cfg = srsly.msgpack_loads(bytes_data)
|
|
self.punct_chars = cfg.get("punct_chars", self.default_punct_chars)
|
|
return self
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
"""Serialize the sentencizer to disk.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
path = path.with_suffix(".json")
|
|
srsly.write_json(path, {"punct_chars": self.punct_chars})
|
|
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
"""Load the sentencizer from disk.
|
|
|
|
DOCS: https://spacy.io/api/sentencizer#from_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
path = path.with_suffix(".json")
|
|
cfg = srsly.read_json(path)
|
|
self.punct_chars = cfg.get("punct_chars", self.default_punct_chars)
|
|
return self
|
|
|
|
|
|
__all__ = ["Tagger", "DependencyParser", "EntityRecognizer", "Tensorizer", "TextCategorizer", "EntityLinker", "Sentencizer"]
|