spaCy/spacy/cli/converters/conllubio2json.py
Ines Montani 37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00

86 lines
2.7 KiB
Python

# coding: utf8
from __future__ import unicode_literals
from ...gold import iob_to_biluo
def conllubio2json(input_data, n_sents=10, use_morphology=False, lang=None):
"""
Convert conllu files into JSON format for use with train cli.
use_morphology parameter enables appending morphology to tags, which is
useful for languages such as Spanish, where UD tags are not so rich.
"""
# by @dvsrepo, via #11 explosion/spacy-dev-resources
docs = []
sentences = []
conll_tuples = read_conllx(input_data, use_morphology=use_morphology)
for i, (raw_text, tokens) in enumerate(conll_tuples):
sentence, brackets = tokens[0]
sentences.append(generate_sentence(sentence))
# Real-sized documents could be extracted using the comments on the
# conluu document
if len(sentences) % n_sents == 0:
doc = create_doc(sentences, i)
docs.append(doc)
sentences = []
return docs
def read_conllx(input_data, use_morphology=False, n=0):
i = 0
for sent in input_data.strip().split("\n\n"):
lines = sent.strip().split("\n")
if lines:
while lines[0].startswith("#"):
lines.pop(0)
tokens = []
for line in lines:
parts = line.split("\t")
id_, word, lemma, pos, tag, morph, head, dep, _1, ner = parts
if "-" in id_ or "." in id_:
continue
try:
id_ = int(id_) - 1
head = (int(head) - 1) if head != "0" else id_
dep = "ROOT" if dep == "root" else dep
tag = pos if tag == "_" else tag
tag = tag + "__" + morph if use_morphology else tag
ner = ner if ner else "O"
tokens.append((id_, word, tag, head, dep, ner))
except: # noqa: E722
print(line)
raise
tuples = [list(t) for t in zip(*tokens)]
yield (None, [[tuples, []]])
i += 1
if n >= 1 and i >= n:
break
def generate_sentence(sent):
(id_, word, tag, head, dep, ner) = sent
sentence = {}
tokens = []
ner = iob_to_biluo(ner)
for i, id in enumerate(id_):
token = {}
token["orth"] = word[i]
token["tag"] = tag[i]
token["head"] = head[i] - id
token["dep"] = dep[i]
token["ner"] = ner[i]
tokens.append(token)
sentence["tokens"] = tokens
return sentence
def create_doc(sentences, id):
doc = {}
paragraph = {}
doc["id"] = id
doc["paragraphs"] = []
paragraph["sentences"] = sentences
doc["paragraphs"].append(paragraph)
return doc