mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			297 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import re
 | |
| 
 | |
| from .conll_ner_to_docs import n_sents_info
 | |
| from ...training import iob_to_biluo, biluo_tags_to_spans
 | |
| from ...tokens import Doc, Token, Span
 | |
| from ...vocab import Vocab
 | |
| from wasabi import Printer
 | |
| 
 | |
| 
 | |
| def conllu_to_docs(
 | |
|     input_data,
 | |
|     n_sents=10,
 | |
|     append_morphology=False,
 | |
|     ner_map=None,
 | |
|     merge_subtokens=False,
 | |
|     no_print=False,
 | |
|     **_
 | |
| ):
 | |
|     """
 | |
|     Convert conllu files into JSON format for use with train cli.
 | |
|     append_morphology parameter enables appending morphology to tags, which is
 | |
|     useful for languages such as Spanish, where UD tags are not so rich.
 | |
| 
 | |
|     Extract NER tags if available and convert them so that they follow
 | |
|     BILUO and the Wikipedia scheme
 | |
|     """
 | |
|     MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
 | |
|     msg = Printer(no_print=no_print)
 | |
|     n_sents_info(msg, n_sents)
 | |
|     sent_docs = read_conllx(
 | |
|         input_data,
 | |
|         append_morphology=append_morphology,
 | |
|         ner_tag_pattern=MISC_NER_PATTERN,
 | |
|         ner_map=ner_map,
 | |
|         merge_subtokens=merge_subtokens,
 | |
|     )
 | |
|     sent_docs_to_merge = []
 | |
|     for sent_doc in sent_docs:
 | |
|         sent_docs_to_merge.append(sent_doc)
 | |
|         if len(sent_docs_to_merge) % n_sents == 0:
 | |
|             yield Doc.from_docs(sent_docs_to_merge)
 | |
|             sent_docs_to_merge = []
 | |
|     if sent_docs_to_merge:
 | |
|         yield Doc.from_docs(sent_docs_to_merge)
 | |
| 
 | |
| 
 | |
| def has_ner(input_data, ner_tag_pattern):
 | |
|     """
 | |
|     Check the MISC column for NER tags.
 | |
|     """
 | |
|     for sent in input_data.strip().split("\n\n"):
 | |
|         lines = sent.strip().split("\n")
 | |
|         if lines:
 | |
|             while lines[0].startswith("#"):
 | |
|                 lines.pop(0)
 | |
|             for line in lines:
 | |
|                 parts = line.split("\t")
 | |
|                 id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | |
|                 for misc_part in misc.split("|"):
 | |
|                     if re.match(ner_tag_pattern, misc_part):
 | |
|                         return True
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def read_conllx(
 | |
|     input_data,
 | |
|     append_morphology=False,
 | |
|     merge_subtokens=False,
 | |
|     ner_tag_pattern="",
 | |
|     ner_map=None,
 | |
| ):
 | |
|     """Yield docs, one for each sentence"""
 | |
|     vocab = Vocab()  # need vocab to make a minimal Doc
 | |
|     for sent in input_data.strip().split("\n\n"):
 | |
|         lines = sent.strip().split("\n")
 | |
|         if lines:
 | |
|             while lines[0].startswith("#"):
 | |
|                 lines.pop(0)
 | |
|             doc = conllu_sentence_to_doc(
 | |
|                 vocab,
 | |
|                 lines,
 | |
|                 ner_tag_pattern,
 | |
|                 merge_subtokens=merge_subtokens,
 | |
|                 append_morphology=append_morphology,
 | |
|                 ner_map=ner_map,
 | |
|             )
 | |
|             yield doc
 | |
| 
 | |
| 
 | |
| def get_entities(lines, tag_pattern, ner_map=None):
 | |
|     """Find entities in the MISC column according to the pattern and map to
 | |
|     final entity type with `ner_map` if mapping present. Entity tag is 'O' if
 | |
|     the pattern is not matched.
 | |
| 
 | |
|     lines (str): CONLL-U lines for one sentences
 | |
|     tag_pattern (str): Regex pattern for entity tag
 | |
|     ner_map (dict): Map old NER tag names to new ones, '' maps to O.
 | |
|     RETURNS (list): List of BILUO entity tags
 | |
|     """
 | |
|     miscs = []
 | |
|     for line in lines:
 | |
|         parts = line.split("\t")
 | |
|         id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | |
|         if "-" in id_ or "." in id_:
 | |
|             continue
 | |
|         miscs.append(misc)
 | |
| 
 | |
|     iob = []
 | |
|     for misc in miscs:
 | |
|         iob_tag = "O"
 | |
|         for misc_part in misc.split("|"):
 | |
|             tag_match = re.match(tag_pattern, misc_part)
 | |
|             if tag_match:
 | |
|                 prefix = tag_match.group(2)
 | |
|                 suffix = tag_match.group(3)
 | |
|                 if prefix and suffix:
 | |
|                     iob_tag = prefix + "-" + suffix
 | |
|                     if ner_map:
 | |
|                         suffix = ner_map.get(suffix, suffix)
 | |
|                         if suffix == "":
 | |
|                             iob_tag = "O"
 | |
|                         else:
 | |
|                             iob_tag = prefix + "-" + suffix
 | |
|                 break
 | |
|         iob.append(iob_tag)
 | |
|     return iob_to_biluo(iob)
 | |
| 
 | |
| 
 | |
| def conllu_sentence_to_doc(
 | |
|     vocab,
 | |
|     lines,
 | |
|     ner_tag_pattern,
 | |
|     merge_subtokens=False,
 | |
|     append_morphology=False,
 | |
|     ner_map=None,
 | |
| ):
 | |
|     """Create an Example from the lines for one CoNLL-U sentence, merging
 | |
|     subtokens and appending morphology to tags if required.
 | |
| 
 | |
|     lines (str): The non-comment lines for a CoNLL-U sentence
 | |
|     ner_tag_pattern (str): The regex pattern for matching NER in MISC col
 | |
|     RETURNS (Example): An example containing the annotation
 | |
|     """
 | |
|     # create a Doc with each subtoken as its own token
 | |
|     # if merging subtokens, each subtoken orth is the merged subtoken form
 | |
|     if not Token.has_extension("merged_orth"):
 | |
|         Token.set_extension("merged_orth", default="")
 | |
|     if not Token.has_extension("merged_lemma"):
 | |
|         Token.set_extension("merged_lemma", default="")
 | |
|     if not Token.has_extension("merged_morph"):
 | |
|         Token.set_extension("merged_morph", default="")
 | |
|     if not Token.has_extension("merged_spaceafter"):
 | |
|         Token.set_extension("merged_spaceafter", default="")
 | |
|     words, spaces, tags, poses, morphs, lemmas = [], [], [], [], [], []
 | |
|     heads, deps = [], []
 | |
|     subtok_word = ""
 | |
|     in_subtok = False
 | |
|     for i in range(len(lines)):
 | |
|         line = lines[i]
 | |
|         parts = line.split("\t")
 | |
|         id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | |
|         if "." in id_:
 | |
|             continue
 | |
|         if "-" in id_:
 | |
|             in_subtok = True
 | |
|         if "-" in id_:
 | |
|             in_subtok = True
 | |
|             subtok_word = word
 | |
|             subtok_start, subtok_end = id_.split("-")
 | |
|             subtok_spaceafter = "SpaceAfter=No" not in misc
 | |
|             continue
 | |
|         if merge_subtokens and in_subtok:
 | |
|             words.append(subtok_word)
 | |
|         else:
 | |
|             words.append(word)
 | |
|         if in_subtok:
 | |
|             if id_ == subtok_end:
 | |
|                 spaces.append(subtok_spaceafter)
 | |
|             else:
 | |
|                 spaces.append(False)
 | |
|         elif "SpaceAfter=No" in misc:
 | |
|             spaces.append(False)
 | |
|         else:
 | |
|             spaces.append(True)
 | |
|         if in_subtok and id_ == subtok_end:
 | |
|             subtok_word = ""
 | |
|             in_subtok = False
 | |
|         id_ = int(id_) - 1
 | |
|         head = (int(head) - 1) if head not in ("0", "_") else id_
 | |
|         tag = pos if tag == "_" else tag
 | |
|         morph = morph if morph != "_" else ""
 | |
|         dep = "ROOT" if dep == "root" else dep
 | |
|         lemmas.append(lemma)
 | |
|         poses.append(pos)
 | |
|         tags.append(tag)
 | |
|         morphs.append(morph)
 | |
|         heads.append(head)
 | |
|         deps.append(dep)
 | |
| 
 | |
|     doc = Doc(
 | |
|         vocab,
 | |
|         words=words,
 | |
|         spaces=spaces,
 | |
|         tags=tags,
 | |
|         pos=poses,
 | |
|         deps=deps,
 | |
|         lemmas=lemmas,
 | |
|         morphs=morphs,
 | |
|         heads=heads,
 | |
|     )
 | |
|     for i in range(len(doc)):
 | |
|         doc[i]._.merged_orth = words[i]
 | |
|         doc[i]._.merged_morph = morphs[i]
 | |
|         doc[i]._.merged_lemma = lemmas[i]
 | |
|         doc[i]._.merged_spaceafter = spaces[i]
 | |
|     ents = get_entities(lines, ner_tag_pattern, ner_map)
 | |
|     doc.ents = biluo_tags_to_spans(doc, ents)
 | |
| 
 | |
|     if merge_subtokens:
 | |
|         doc = merge_conllu_subtokens(lines, doc)
 | |
| 
 | |
|     # create final Doc from custom Doc annotation
 | |
|     words, spaces, tags, morphs, lemmas, poses = [], [], [], [], [], []
 | |
|     heads, deps = [], []
 | |
|     for i, t in enumerate(doc):
 | |
|         words.append(t._.merged_orth)
 | |
|         lemmas.append(t._.merged_lemma)
 | |
|         spaces.append(t._.merged_spaceafter)
 | |
|         morphs.append(t._.merged_morph)
 | |
|         if append_morphology and t._.merged_morph:
 | |
|             tags.append(t.tag_ + "__" + t._.merged_morph)
 | |
|         else:
 | |
|             tags.append(t.tag_)
 | |
|         poses.append(t.pos_)
 | |
|         heads.append(t.head.i)
 | |
|         deps.append(t.dep_)
 | |
| 
 | |
|     doc_x = Doc(
 | |
|         vocab,
 | |
|         words=words,
 | |
|         spaces=spaces,
 | |
|         tags=tags,
 | |
|         morphs=morphs,
 | |
|         lemmas=lemmas,
 | |
|         pos=poses,
 | |
|         deps=deps,
 | |
|         heads=heads,
 | |
|     )
 | |
|     doc_x.ents = [Span(doc_x, ent.start, ent.end, label=ent.label) for ent in doc.ents]
 | |
| 
 | |
|     return doc_x
 | |
| 
 | |
| 
 | |
| def merge_conllu_subtokens(lines, doc):
 | |
|     # identify and process all subtoken spans to prepare attrs for merging
 | |
|     subtok_spans = []
 | |
|     for line in lines:
 | |
|         parts = line.split("\t")
 | |
|         id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | |
|         if "-" in id_:
 | |
|             subtok_start, subtok_end = id_.split("-")
 | |
|             subtok_span = doc[int(subtok_start) - 1 : int(subtok_end)]
 | |
|             subtok_spans.append(subtok_span)
 | |
|             # create merged tag, morph, and lemma values
 | |
|             tags = []
 | |
|             morphs = {}
 | |
|             lemmas = []
 | |
|             for token in subtok_span:
 | |
|                 tags.append(token.tag_)
 | |
|                 lemmas.append(token.lemma_)
 | |
|                 if token._.merged_morph:
 | |
|                     for feature in token._.merged_morph.split("|"):
 | |
|                         field, values = feature.split("=", 1)
 | |
|                         if field not in morphs:
 | |
|                             morphs[field] = set()
 | |
|                         for value in values.split(","):
 | |
|                             morphs[field].add(value)
 | |
|             # create merged features for each morph field
 | |
|             for field, values in morphs.items():
 | |
|                 morphs[field] = field + "=" + ",".join(sorted(values))
 | |
|             # set the same attrs on all subtok tokens so that whatever head the
 | |
|             # retokenizer chooses, the final attrs are available on that token
 | |
|             for token in subtok_span:
 | |
|                 token._.merged_orth = token.orth_
 | |
|                 token._.merged_lemma = " ".join(lemmas)
 | |
|                 token.tag_ = "_".join(tags)
 | |
|                 token._.merged_morph = "|".join(sorted(morphs.values()))
 | |
|                 token._.merged_spaceafter = (
 | |
|                     True if subtok_span[-1].whitespace_ else False
 | |
|                 )
 | |
| 
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for span in subtok_spans:
 | |
|             retokenizer.merge(span)
 | |
| 
 | |
|     return doc
 |