mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
ffdd5e964f
* Add todo * Auto-format * Update wasabi pin * Format training results with wasabi * Remove loading animation from model saving Currently behaves weirdly * Inline messages * Remove unnecessary path2str Already taken care of by printer * Inline messages in CLI * Remove unused function * Move loading indicator into loading function * Check for invalid whitespace entities
245 lines
8.5 KiB
Python
245 lines
8.5 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import plac
|
|
import math
|
|
from tqdm import tqdm
|
|
import numpy
|
|
from ast import literal_eval
|
|
from pathlib import Path
|
|
from preshed.counter import PreshCounter
|
|
import tarfile
|
|
import gzip
|
|
import zipfile
|
|
import srsly
|
|
from wasabi import Printer
|
|
|
|
from ..vectors import Vectors
|
|
from ..errors import Errors, Warnings, user_warning
|
|
from ..util import ensure_path, get_lang_class
|
|
|
|
try:
|
|
import ftfy
|
|
except ImportError:
|
|
ftfy = None
|
|
|
|
|
|
msg = Printer()
|
|
|
|
|
|
@plac.annotations(
|
|
lang=("Model language", "positional", None, str),
|
|
output_dir=("Model output directory", "positional", None, Path),
|
|
freqs_loc=("Location of words frequencies file", "option", "f", Path),
|
|
jsonl_loc=("Location of JSONL-formatted attributes file", "option", "j", Path),
|
|
clusters_loc=("Optional location of brown clusters data", "option", "c", str),
|
|
vectors_loc=("Optional vectors file in Word2Vec format", "option", "v", str),
|
|
prune_vectors=("Optional number of vectors to prune to", "option", "V", int),
|
|
)
|
|
def init_model(
|
|
lang,
|
|
output_dir,
|
|
freqs_loc=None,
|
|
clusters_loc=None,
|
|
jsonl_loc=None,
|
|
vectors_loc=None,
|
|
prune_vectors=-1,
|
|
):
|
|
"""
|
|
Create a new model from raw data, like word frequencies, Brown clusters
|
|
and word vectors. If vectors are provided in Word2Vec format, they can
|
|
be either a .txt or zipped as a .zip or .tar.gz.
|
|
"""
|
|
if jsonl_loc is not None:
|
|
if freqs_loc is not None or clusters_loc is not None:
|
|
settings = ["-j"]
|
|
if freqs_loc:
|
|
settings.append("-f")
|
|
if clusters_loc:
|
|
settings.append("-c")
|
|
msg.warn(
|
|
"Incompatible arguments",
|
|
"The -f and -c arguments are deprecated, and not compatible "
|
|
"with the -j argument, which should specify the same "
|
|
"information. Either merge the frequencies and clusters data "
|
|
"into the JSONL-formatted file (recommended), or use only the "
|
|
"-f and -c files, without the other lexical attributes.",
|
|
)
|
|
jsonl_loc = ensure_path(jsonl_loc)
|
|
lex_attrs = srsly.read_jsonl(jsonl_loc)
|
|
else:
|
|
clusters_loc = ensure_path(clusters_loc)
|
|
freqs_loc = ensure_path(freqs_loc)
|
|
if freqs_loc is not None and not freqs_loc.exists():
|
|
msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
|
|
lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
|
|
|
|
with msg.loading("Creating model..."):
|
|
nlp = create_model(lang, lex_attrs)
|
|
msg.good("Successfully created model")
|
|
if vectors_loc is not None:
|
|
add_vectors(nlp, vectors_loc, prune_vectors)
|
|
vec_added = len(nlp.vocab.vectors)
|
|
lex_added = len(nlp.vocab)
|
|
msg.good(
|
|
"Sucessfully compiled vocab",
|
|
"{} entries, {} vectors".format(lex_added, vec_added),
|
|
)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
nlp.to_disk(output_dir)
|
|
return nlp
|
|
|
|
|
|
def open_file(loc):
|
|
"""Handle .gz, .tar.gz or unzipped files"""
|
|
loc = ensure_path(loc)
|
|
if tarfile.is_tarfile(str(loc)):
|
|
return tarfile.open(str(loc), "r:gz")
|
|
elif loc.parts[-1].endswith("gz"):
|
|
return (line.decode("utf8") for line in gzip.open(str(loc), "r"))
|
|
elif loc.parts[-1].endswith("zip"):
|
|
zip_file = zipfile.ZipFile(str(loc))
|
|
names = zip_file.namelist()
|
|
file_ = zip_file.open(names[0])
|
|
return (line.decode("utf8") for line in file_)
|
|
else:
|
|
return loc.open("r", encoding="utf8")
|
|
|
|
|
|
def read_attrs_from_deprecated(freqs_loc, clusters_loc):
|
|
with msg.loading("Counting frequencies..."):
|
|
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
|
|
msg.good("Counted frequencies")
|
|
with msg.loading("Reading clusters..."):
|
|
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
|
msg.good("Read clusters")
|
|
lex_attrs = []
|
|
sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
|
|
for i, (word, prob) in tqdm(enumerate(sorted_probs)):
|
|
attrs = {"orth": word, "id": i, "prob": prob}
|
|
# Decode as a little-endian string, so that we can do & 15 to get
|
|
# the first 4 bits. See _parse_features.pyx
|
|
if word in clusters:
|
|
attrs["cluster"] = int(clusters[word][::-1], 2)
|
|
else:
|
|
attrs["cluster"] = 0
|
|
lex_attrs.append(attrs)
|
|
return lex_attrs
|
|
|
|
|
|
def create_model(lang, lex_attrs):
|
|
lang_class = get_lang_class(lang)
|
|
nlp = lang_class()
|
|
for lexeme in nlp.vocab:
|
|
lexeme.rank = 0
|
|
lex_added = 0
|
|
for attrs in lex_attrs:
|
|
if "settings" in attrs:
|
|
continue
|
|
lexeme = nlp.vocab[attrs["orth"]]
|
|
lexeme.set_attrs(**attrs)
|
|
lexeme.is_oov = False
|
|
lex_added += 1
|
|
lex_added += 1
|
|
oov_prob = min(lex.prob for lex in nlp.vocab)
|
|
nlp.vocab.cfg.update({"oov_prob": oov_prob - 1})
|
|
return nlp
|
|
|
|
|
|
def add_vectors(nlp, vectors_loc, prune_vectors):
|
|
vectors_loc = ensure_path(vectors_loc)
|
|
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
|
|
nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb")))
|
|
for lex in nlp.vocab:
|
|
if lex.rank:
|
|
nlp.vocab.vectors.add(lex.orth, row=lex.rank)
|
|
else:
|
|
if vectors_loc:
|
|
with msg.loading("Reading vectors from {}".format(vectors_loc)):
|
|
vectors_data, vector_keys = read_vectors(vectors_loc)
|
|
msg.good("Loaded vectors from {}".format(vectors_loc))
|
|
else:
|
|
vectors_data, vector_keys = (None, None)
|
|
if vector_keys is not None:
|
|
for word in vector_keys:
|
|
if word not in nlp.vocab:
|
|
lexeme = nlp.vocab[word]
|
|
lexeme.is_oov = False
|
|
if vectors_data is not None:
|
|
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
|
nlp.vocab.vectors.name = "%s_model.vectors" % nlp.meta["lang"]
|
|
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
|
|
if prune_vectors >= 1:
|
|
nlp.vocab.prune_vectors(prune_vectors)
|
|
|
|
|
|
def read_vectors(vectors_loc):
|
|
f = open_file(vectors_loc)
|
|
shape = tuple(int(size) for size in next(f).split())
|
|
vectors_data = numpy.zeros(shape=shape, dtype="f")
|
|
vectors_keys = []
|
|
for i, line in enumerate(tqdm(f)):
|
|
line = line.rstrip()
|
|
pieces = line.rsplit(" ", vectors_data.shape[1] + 1)
|
|
word = pieces.pop(0)
|
|
if len(pieces) != vectors_data.shape[1]:
|
|
msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1)
|
|
vectors_data[i] = numpy.asarray(pieces, dtype="f")
|
|
vectors_keys.append(word)
|
|
return vectors_data, vectors_keys
|
|
|
|
|
|
def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
|
|
counts = PreshCounter()
|
|
total = 0
|
|
with freqs_loc.open() as f:
|
|
for i, line in enumerate(f):
|
|
freq, doc_freq, key = line.rstrip().split("\t", 2)
|
|
freq = int(freq)
|
|
counts.inc(i + 1, freq)
|
|
total += freq
|
|
counts.smooth()
|
|
log_total = math.log(total)
|
|
probs = {}
|
|
with freqs_loc.open() as f:
|
|
for line in tqdm(f):
|
|
freq, doc_freq, key = line.rstrip().split("\t", 2)
|
|
doc_freq = int(doc_freq)
|
|
freq = int(freq)
|
|
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
|
|
word = literal_eval(key)
|
|
smooth_count = counts.smoother(int(freq))
|
|
probs[word] = math.log(smooth_count) - log_total
|
|
oov_prob = math.log(counts.smoother(0)) - log_total
|
|
return probs, oov_prob
|
|
|
|
|
|
def read_clusters(clusters_loc):
|
|
clusters = {}
|
|
if ftfy is None:
|
|
user_warning(Warnings.W004)
|
|
with clusters_loc.open() as f:
|
|
for line in tqdm(f):
|
|
try:
|
|
cluster, word, freq = line.split()
|
|
if ftfy is not None:
|
|
word = ftfy.fix_text(word)
|
|
except ValueError:
|
|
continue
|
|
# If the clusterer has only seen the word a few times, its
|
|
# cluster is unreliable.
|
|
if int(freq) >= 3:
|
|
clusters[word] = cluster
|
|
else:
|
|
clusters[word] = "0"
|
|
# Expand clusters with re-casing
|
|
for word, cluster in list(clusters.items()):
|
|
if word.lower() not in clusters:
|
|
clusters[word.lower()] = cluster
|
|
if word.title() not in clusters:
|
|
clusters[word.title()] = cluster
|
|
if word.upper() not in clusters:
|
|
clusters[word.upper()] = cluster
|
|
return clusters
|