spaCy/spacy/cli/pretrain.py
Matthew Honnibal 83ac227bd3
💫 Better support for semi-supervised learning (#3035)
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train

One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.

    Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.

    Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.

    Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:

python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze

Implement rehearsal methods for pipeline components

The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:

    Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.

    Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.

    Implement rehearsal updates for tagger

    Implement rehearsal updates for text categoriz
2018-12-10 16:25:33 +01:00

250 lines
9.4 KiB
Python

# coding: utf8
from __future__ import print_function, unicode_literals
import plac
import random
import numpy
import time
from collections import Counter
from pathlib import Path
from thinc.v2v import Affine, Maxout
from thinc.api import wrap
from thinc.misc import LayerNorm as LN
from thinc.neural.util import prefer_gpu
from wasabi import Printer
import srsly
from ..tokens import Doc
from ..attrs import ID, HEAD
from .._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
from .._ml import masked_language_model
from .. import util
@plac.annotations(
texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str),
vectors_model=("Name or path to vectors model to learn from"),
output_dir=("Directory to write models each epoch", "positional", None, str),
width=("Width of CNN layers", "option", "cw", int),
depth=("Depth of CNN layers", "option", "cd", int),
embed_rows=("Embedding rows", "option", "er", int),
use_vectors=("Whether to use the static vectors as input features", "flag", "uv"),
dropout=("Dropout", "option", "d", float),
seed=("Seed for random number generators", "option", "s", float),
nr_iter=("Number of iterations to pretrain", "option", "i", int),
)
def pretrain(
texts_loc,
vectors_model,
output_dir,
width=96,
depth=4,
embed_rows=2000,
use_vectors=False,
dropout=0.2,
nr_iter=1000,
seed=0,
):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
using an approximate language-modelling objective. Specifically, we load
pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
vectors which match the pre-trained ones. The weights are saved to a directory
after each epoch. You can then pass a path to one of these pre-trained weights
files to the 'spacy train' command.
This technique may be especially helpful if you have little labelled data.
However, it's still quite experimental, so your mileage may vary.
To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. The API and
errors around this need some improvement.
"""
config = dict(locals())
msg = Printer()
util.fix_random_seed(seed)
has_gpu = prefer_gpu()
msg.info("Using GPU" if has_gpu else "Not using GPU")
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
msg.good("Created output directory")
srsly.write_json(output_dir / "config.json", config)
msg.good("Saved settings to config.json")
# Load texts from file or stdin
if texts_loc != "-": # reading from a file
texts_loc = Path(texts_loc)
if not texts_loc.exists():
msg.fail("Input text file doesn't exist", texts_loc, exits=1)
with msg.loading("Loading input texts..."):
texts = list(srsly.read_jsonl(texts_loc))
msg.good("Loaded input texts")
random.shuffle(texts)
else: # reading from stdin
msg.text("Reading input text from stdin...")
texts = srsly.read_jsonl("-")
with msg.loading("Loading model '{}'...".format(vectors_model)):
nlp = util.load_model(vectors_model)
msg.good("Loaded model '{}'".format(vectors_model))
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name
model = create_pretraining_model(
nlp,
Tok2Vec(
width,
embed_rows,
conv_depth=depth,
pretrained_vectors=pretrained_vectors,
bilstm_depth=0, # Requires PyTorch. Experimental.
cnn_maxout_pieces=2, # You can try setting this higher
subword_features=True,
),
) # Set to False for character models, e.g. Chinese
optimizer = create_default_optimizer(model.ops)
tracker = ProgressTracker()
msg.divider("Pre-training tok2vec layer")
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
for epoch in range(nr_iter):
for batch in util.minibatch_by_words(
((text, None) for text in texts), size=5000
):
docs = make_docs(nlp, [text for (text, _) in batch])
loss = make_update(model, docs, optimizer, drop=dropout)
progress = tracker.update(epoch, loss, docs)
if progress:
msg.row(progress, **row_settings)
if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7:
break
with model.use_params(optimizer.averages):
with (output_dir / ("model%d.bin" % epoch)).open("wb") as file_:
file_.write(model.tok2vec.to_bytes())
log = {
"nr_word": tracker.nr_word,
"loss": tracker.loss,
"epoch_loss": tracker.epoch_loss,
"epoch": epoch,
}
with (output_dir / "log.jsonl").open("a") as file_:
file_.write(srsly.json_dumps(log) + "\n")
tracker.epoch_loss = 0.0
if texts_loc != "-":
# Reshuffle the texts if texts were loaded from a file
random.shuffle(texts)
def make_update(model, docs, optimizer, drop=0.0):
"""Perform an update over a single batch of documents.
docs (iterable): A batch of `Doc` objects.
drop (float): The droput rate.
optimizer (callable): An optimizer.
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs, drop=drop)
gradients = get_vectors_loss(model.ops, docs, predictions)
backprop(gradients, sgd=optimizer)
# Don't want to return a cupy object here
# The gradients are modified in-place by the BERT MLM,
# so we get an accurate loss
loss = float((gradients ** 2).mean())
return loss
def make_docs(nlp, batch, min_length=1, max_length=500):
docs = []
for record in batch:
text = record["text"]
if "tokens" in record:
doc = Doc(nlp.vocab, words=record["tokens"])
else:
doc = nlp.make_doc(text)
if "heads" in record:
heads = record["heads"]
heads = numpy.asarray(heads, dtype="uint64")
heads = heads.reshape((len(doc), 1))
doc = doc.from_array([HEAD], heads)
if len(doc) >= min_length and len(doc) < max_length:
docs.append(doc)
return docs
def get_vectors_loss(ops, docs, prediction):
"""Compute a mean-squared error loss between the documents' vectors and
the prediction.
Note that this is ripe for customization! We could compute the vectors
in some other word, e.g. with an LSTM language model, or use some other
type of objective.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_scores = prediction - target
return d_scores
def create_pretraining_model(nlp, tok2vec):
"""Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
"""
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = chain(
LN(Maxout(300, pieces=3)), zero_init(Affine(output_size, drop_factor=0.0))
)
# This is annoying, but the parser etc have the flatten step after
# the tok2vec. To load the weights in cleanly, we need to match
# the shape of the models' components exactly. So what we cann
# "tok2vec" has to be the same set of processes as what the components do.
tok2vec = chain(tok2vec, flatten)
model = chain(tok2vec, output_layer)
model = masked_language_model(nlp.vocab, model)
model.tok2vec = tok2vec
model.output_layer = output_layer
model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
return model
class ProgressTracker(object):
def __init__(self, frequency=1000000):
self.loss = 0.0
self.prev_loss = 0.0
self.nr_word = 0
self.words_per_epoch = Counter()
self.frequency = frequency
self.last_time = time.time()
self.last_update = 0
self.epoch_loss = 0.0
def update(self, epoch, loss, docs):
self.loss += loss
self.epoch_loss += loss
words_in_batch = sum(len(doc) for doc in docs)
self.words_per_epoch[epoch] += words_in_batch
self.nr_word += words_in_batch
words_since_update = self.nr_word - self.last_update
if words_since_update >= self.frequency:
wps = words_since_update / (time.time() - self.last_time)
self.last_update = self.nr_word
self.last_time = time.time()
loss_per_word = self.loss - self.prev_loss
status = (
epoch,
self.nr_word,
"%.5f" % self.loss,
"%.4f" % loss_per_word,
int(wps),
)
self.prev_loss = float(self.loss)
return status
else:
return None