mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from .doc import Doc
 | 
						|
from ..symbols import HEAD, TAG, DEP, ENT_IOB, ENT_TYPE
 | 
						|
 | 
						|
 | 
						|
def merge_ents(doc):
 | 
						|
    """
 | 
						|
    Helper: merge adjacent entities into single tokens; modifies the doc.
 | 
						|
    """
 | 
						|
    for ent in doc.ents:
 | 
						|
        ent.merge(ent.root.tag_, ent.text, ent.label_)
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
def format_POS(token, light, flat):
 | 
						|
    """
 | 
						|
    Helper: form the POS output for a token.
 | 
						|
    """
 | 
						|
    subtree = dict([
 | 
						|
        ("word", token.text),
 | 
						|
        ("lemma", token.lemma_),  # trigger
 | 
						|
        ("NE", token.ent_type_),  # trigger
 | 
						|
        ("POS_fine", token.tag_),
 | 
						|
        ("POS_coarse", token.pos_),
 | 
						|
        ("arc", token.dep_),
 | 
						|
        ("modifiers", [])
 | 
						|
    ])
 | 
						|
    if light:
 | 
						|
        subtree.pop("lemma")
 | 
						|
        subtree.pop("NE")
 | 
						|
    if flat:
 | 
						|
        subtree.pop("arc")
 | 
						|
        subtree.pop("modifiers")
 | 
						|
    return subtree
 | 
						|
 | 
						|
 | 
						|
def POS_tree(root, light=False, flat=False):
 | 
						|
    """
 | 
						|
    Helper: generate a POS tree for a root token. The doc must have
 | 
						|
    merge_ents(doc) ran on it.
 | 
						|
    """
 | 
						|
    subtree = format_POS(root, light=light, flat=flat)
 | 
						|
    for c in root.children:
 | 
						|
        subtree["modifiers"].append(POS_tree(c))
 | 
						|
    return subtree
 | 
						|
 | 
						|
 | 
						|
def parse_tree(doc, light=False, flat=False):
 | 
						|
    """
 | 
						|
    Makes a copy of the doc, then construct a syntactic parse tree, similar to
 | 
						|
    the one used in displaCy. Generates the POS tree for all sentences in a doc.
 | 
						|
 | 
						|
    Args:
 | 
						|
        doc: The doc for parsing.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        [parse_trees (Dict)]:
 | 
						|
 | 
						|
    >>> from spacy.en import English
 | 
						|
    >>> nlp = English()
 | 
						|
    >>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.')
 | 
						|
    >>> trees = doc.print_tree()
 | 
						|
    [{'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Bob', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Bob'}, {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'dobj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'brought', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'bring'}, {'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}]
 | 
						|
    """
 | 
						|
    doc_clone  = Doc(doc.vocab, words=[w.text for w in doc])
 | 
						|
    doc_clone.from_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE],
 | 
						|
                         doc.to_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE]))
 | 
						|
    merge_ents(doc_clone)  # merge the entities into single tokens first
 | 
						|
    return [POS_tree(sent.root, light=light, flat=flat) for sent in doc_clone.sents]
 |