mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Add long_token_splitter component Add a `long_token_splitter` component for use with transformer pipelines. This component splits up long tokens like URLs into smaller tokens. This is particularly relevant for pretrained pipelines with `strided_spans`, since the user can't change the length of the span `window` and may not wish to preprocess the input texts. The `long_token_splitter` splits tokens that are at least `long_token_length` tokens long into smaller tokens of `split_length` size. Notes: * Since this is intended for use as the first component in a pipeline, the token splitter does not try to preserve any token annotation. * API docs to come when the API is stable. * Adjust API, add test * Fix name in factory
		
			
				
	
	
		
			77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from spacy.pipeline.functions import merge_subtokens
 | |
| from spacy.language import Language
 | |
| from spacy.tokens import Span, Doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(en_vocab):
 | |
|     # fmt: off
 | |
|     words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
 | |
|     heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 11, 12, 13, 13]
 | |
|     deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT",
 | |
|             "subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"]
 | |
|     # fmt: on
 | |
|     return Doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc2(en_vocab):
 | |
|     words = ["I", "like", "New", "York", "in", "Autumn", "."]
 | |
|     heads = [1, 1, 3, 1, 1, 4, 1]
 | |
|     tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | |
|     deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, tags=tags, pos=pos, deps=deps)
 | |
|     doc.ents = [Span(doc, 2, 4, label="GPE")]
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| def test_merge_subtokens(doc):
 | |
|     doc = merge_subtokens(doc)
 | |
|     # Doc doesn't have spaces, so the result is "And a third ."
 | |
|     # fmt: off
 | |
|     assert [t.text for t in doc] == ["This", "is", "a sentence", ".", "This", "is", "another sentence", ".", "And a third ."]
 | |
|     # fmt: on
 | |
| 
 | |
| 
 | |
| def test_factories_merge_noun_chunks(doc2):
 | |
|     assert len(doc2) == 7
 | |
|     nlp = Language()
 | |
|     merge_noun_chunks = nlp.create_pipe("merge_noun_chunks")
 | |
|     merge_noun_chunks(doc2)
 | |
|     assert len(doc2) == 6
 | |
|     assert doc2[2].text == "New York"
 | |
| 
 | |
| 
 | |
| def test_factories_merge_ents(doc2):
 | |
|     assert len(doc2) == 7
 | |
|     assert len(list(doc2.ents)) == 1
 | |
|     nlp = Language()
 | |
|     merge_entities = nlp.create_pipe("merge_entities")
 | |
|     merge_entities(doc2)
 | |
|     assert len(doc2) == 6
 | |
|     assert len(list(doc2.ents)) == 1
 | |
|     assert doc2[2].text == "New York"
 | |
| 
 | |
| 
 | |
| def test_token_splitter():
 | |
|     nlp = Language()
 | |
|     config = {"min_length": 20, "split_length": 5}
 | |
|     token_splitter = nlp.add_pipe("token_splitter", config=config)
 | |
|     doc = nlp("aaaaabbbbbcccccdddd e f g")
 | |
|     assert [t.text for t in doc] == ["aaaaabbbbbcccccdddd", "e", "f", "g"]
 | |
|     doc = nlp("aaaaabbbbbcccccdddddeeeeeff g h i")
 | |
|     assert [t.text for t in doc] == [
 | |
|         "aaaaa",
 | |
|         "bbbbb",
 | |
|         "ccccc",
 | |
|         "ddddd",
 | |
|         "eeeee",
 | |
|         "ff",
 | |
|         "g",
 | |
|         "h",
 | |
|         "i",
 | |
|     ]
 | |
|     assert all(len(t.text) <= token_splitter.split_length for t in doc)
 |