spaCy/spacy/tests/training/test_training.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module ()
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

1165 lines
44 KiB
Python

import random
import numpy
import pytest
import srsly
from thinc.api import Adam, compounding
import spacy
from spacy.lang.en import English
from spacy.tokens import Doc, DocBin
from spacy.training import (
Alignment,
Corpus,
Example,
biluo_tags_to_offsets,
biluo_tags_to_spans,
docs_to_json,
iob_to_biluo,
offsets_to_biluo_tags,
)
from spacy.training.align import get_alignments
from spacy.training.alignment_array import AlignmentArray
from spacy.training.converters import json_to_docs
from spacy.training.loop import train_while_improving
from spacy.util import (
get_words_and_spaces,
load_config_from_str,
load_model_from_path,
minibatch,
)
from ..util import make_tempdir
@pytest.fixture
def doc():
nlp = English() # make sure we get a new vocab every time
# fmt: off
words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
"", "NounType=prop|Number=sing", "NounType=prop|Number=sing", "",
"NounType=prop|Number=sing", "PunctType=peri"]
# head of '.' is intentionally nonprojective for testing
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
ents = ["O"] * len(words)
ents[0] = "B-PERSON"
ents[1] = "I-PERSON"
ents[5] = "B-LOC"
ents[6] = "I-LOC"
ents[8] = "B-GPE"
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
# fmt: on
doc = Doc(
nlp.vocab,
words=words,
tags=tags,
pos=pos,
morphs=morphs,
heads=heads,
deps=deps,
lemmas=lemmas,
ents=ents,
)
doc.cats = cats
return doc
@pytest.fixture()
def merged_dict():
return {
"ids": [1, 2, 3, 4, 5, 6, 7],
"words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
"spaces": [True, True, True, True, True, True, False],
"tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
"sent_starts": [1, 0, 0, 1, 0, 0, 0],
}
@pytest.fixture
def vocab():
nlp = English()
return nlp.vocab
@pytest.mark.issue(999)
def test_issue999():
"""Test that adding entities and resuming training works passably OK.
There are two issues here:
1) We have to re-add labels. This isn't very nice.
2) There's no way to set the learning rate for the weight update, so we
end up out-of-scale, causing it to learn too fast.
"""
TRAIN_DATA = [
["hey", []],
["howdy", []],
["hey there", []],
["hello", []],
["hi", []],
["i'm looking for a place to eat", []],
["i'm looking for a place in the north of town", [(31, 36, "LOCATION")]],
["show me chinese restaurants", [(8, 15, "CUISINE")]],
["show me chines restaurants", [(8, 14, "CUISINE")]],
]
nlp = English()
ner = nlp.add_pipe("ner")
for _, offsets in TRAIN_DATA:
for start, end, label in offsets:
ner.add_label(label)
nlp.initialize()
for itn in range(20):
random.shuffle(TRAIN_DATA)
for raw_text, entity_offsets in TRAIN_DATA:
example = Example.from_dict(
nlp.make_doc(raw_text), {"entities": entity_offsets}
)
nlp.update([example])
with make_tempdir() as model_dir:
nlp.to_disk(model_dir)
nlp2 = load_model_from_path(model_dir)
for raw_text, entity_offsets in TRAIN_DATA:
doc = nlp2(raw_text)
ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
for start, end, label in entity_offsets:
if (start, end) in ents:
assert ents[(start, end)] == label
break
else:
if entity_offsets:
raise Exception(ents)
@pytest.mark.issue(4402)
def test_issue4402():
json_data = {
"id": 0,
"paragraphs": [
{
"raw": "How should I cook bacon in an oven?\nI've heard of people cooking bacon in an oven.",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "How", "ner": "O"},
{"id": 1, "orth": "should", "ner": "O"},
{"id": 2, "orth": "I", "ner": "O"},
{"id": 3, "orth": "cook", "ner": "O"},
{"id": 4, "orth": "bacon", "ner": "O"},
{"id": 5, "orth": "in", "ner": "O"},
{"id": 6, "orth": "an", "ner": "O"},
{"id": 7, "orth": "oven", "ner": "O"},
{"id": 8, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{
"tokens": [
{"id": 9, "orth": "\n", "ner": "O"},
{"id": 10, "orth": "I", "ner": "O"},
{"id": 11, "orth": "'ve", "ner": "O"},
{"id": 12, "orth": "heard", "ner": "O"},
{"id": 13, "orth": "of", "ner": "O"},
{"id": 14, "orth": "people", "ner": "O"},
{"id": 15, "orth": "cooking", "ner": "O"},
{"id": 16, "orth": "bacon", "ner": "O"},
{"id": 17, "orth": "in", "ner": "O"},
{"id": 18, "orth": "an", "ner": "O"},
{"id": 19, "orth": "oven", "ner": "O"},
{"id": 20, "orth": ".", "ner": "O"},
],
"brackets": [],
},
],
"cats": [
{"label": "baking", "value": 1.0},
{"label": "not_baking", "value": 0.0},
],
},
{
"raw": "What is the difference between white and brown eggs?\n",
"sentences": [
{
"tokens": [
{"id": 0, "orth": "What", "ner": "O"},
{"id": 1, "orth": "is", "ner": "O"},
{"id": 2, "orth": "the", "ner": "O"},
{"id": 3, "orth": "difference", "ner": "O"},
{"id": 4, "orth": "between", "ner": "O"},
{"id": 5, "orth": "white", "ner": "O"},
{"id": 6, "orth": "and", "ner": "O"},
{"id": 7, "orth": "brown", "ner": "O"},
{"id": 8, "orth": "eggs", "ner": "O"},
{"id": 9, "orth": "?", "ner": "O"},
],
"brackets": [],
},
{"tokens": [{"id": 10, "orth": "\n", "ner": "O"}], "brackets": []},
],
"cats": [
{"label": "baking", "value": 0.0},
{"label": "not_baking", "value": 1.0},
],
},
],
}
nlp = English()
attrs = ["ORTH", "SENT_START", "ENT_IOB", "ENT_TYPE"]
with make_tempdir() as tmpdir:
output_file = tmpdir / "test4402.spacy"
docs = json_to_docs([json_data])
data = DocBin(docs=docs, attrs=attrs).to_bytes()
with output_file.open("wb") as file_:
file_.write(data)
reader = Corpus(output_file)
train_data = list(reader(nlp))
assert len(train_data) == 2
split_train_data = []
for eg in train_data:
split_train_data.extend(eg.split_sents())
assert len(split_train_data) == 4
CONFIG_7029 = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = ${components.tok2vec.model.encode:width}
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = false
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = 96
depth = 4
window_size = 1
maxout_pieces = 3
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode:width}
upstream = "*"
"""
@pytest.mark.issue(7029)
def test_issue7029():
"""Test that an empty document doesn't mess up an entire batch."""
TRAIN_DATA = [
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
("Eat blue ham", {"tags": ["V", "J", "N"]}),
]
nlp = English.from_config(load_config_from_str(CONFIG_7029))
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
docs1 = list(nlp.pipe(texts, batch_size=1))
docs2 = list(nlp.pipe(texts, batch_size=4))
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
def test_gold_biluo_U(en_vocab):
words = ["I", "flew", "to", "London", "."]
spaces = [True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to London"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "U-LOC", "O"]
def test_gold_biluo_BL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "."]
spaces = [True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_BIL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
def test_gold_biluo_overlap(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC"),
]
with pytest.raises(ValueError):
offsets_to_biluo_tags(doc, entities)
def test_gold_biluo_misalign(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
spaces = [True, True, True, True, True, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
with pytest.warns(UserWarning):
tags = offsets_to_biluo_tags(doc, entities)
assert tags == ["O", "O", "O", "-", "-", "-"]
def test_example_constructor(en_vocab):
words = ["I", "like", "stuff"]
tags = ["NOUN", "VERB", "NOUN"]
tag_ids = [en_vocab.strings.add(tag) for tag in tags]
predicted = Doc(en_vocab, words=words)
reference = Doc(en_vocab, words=words)
reference = reference.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
example = Example(predicted, reference)
tags = example.get_aligned("TAG", as_string=True)
assert tags == ["NOUN", "VERB", "NOUN"]
def test_example_from_dict_tags(en_vocab):
words = ["I", "like", "stuff"]
tags = ["NOUN", "VERB", "NOUN"]
predicted = Doc(en_vocab, words=words)
example = Example.from_dict(predicted, {"TAGS": tags})
tags = example.get_aligned("TAG", as_string=True)
assert tags == ["NOUN", "VERB", "NOUN"]
def test_example_from_dict_no_ner(en_vocab):
words = ["a", "b", "c", "d"]
spaces = [True, True, False, True]
predicted = Doc(en_vocab, words=words, spaces=spaces)
example = Example.from_dict(predicted, {"words": words})
ner_tags = example.get_aligned_ner()
assert ner_tags == [None, None, None, None]
def test_example_from_dict_some_ner(en_vocab):
words = ["a", "b", "c", "d"]
spaces = [True, True, False, True]
predicted = Doc(en_vocab, words=words, spaces=spaces)
example = Example.from_dict(
predicted, {"words": words, "entities": ["U-LOC", None, None, None]}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["U-LOC", None, None, None]
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_json_to_docs_no_ner(en_vocab):
data = [
{
"id": 1,
"paragraphs": [
{
"sentences": [
{
"tokens": [
{"dep": "nn", "head": 1, "tag": "NNP", "orth": "Ms."},
{
"dep": "nsubj",
"head": 1,
"tag": "NNP",
"orth": "Haag",
},
{
"dep": "ROOT",
"head": 0,
"tag": "VBZ",
"orth": "plays",
},
{
"dep": "dobj",
"head": -1,
"tag": "NNP",
"orth": "Elianti",
},
{"dep": "punct", "head": -2, "tag": ".", "orth": "."},
]
}
]
}
],
}
]
docs = list(json_to_docs(data))
assert len(docs) == 1
for doc in docs:
assert not doc.has_annotation("ENT_IOB")
for token in doc:
assert token.ent_iob == 0
eg = Example(
Doc(
doc.vocab,
words=[w.text for w in doc],
spaces=[bool(w.whitespace_) for w in doc],
),
doc,
)
ner_tags = eg.get_aligned_ner()
assert ner_tags == [None, None, None, None, None]
def test_split_sentences(en_vocab):
# fmt: off
words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
sent_starts = [True, False, False, False, False, False, True, False, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "I flew to San Francisco Valley "
assert split_examples[1].text == "had loads of fun "
# fmt: off
words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
sent_starts = [True, False, False, False, False, True, False, False]
# fmt: on
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
assert example.text == "I flew to San Francisco Valley had loads of fun "
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "I flew to San Francisco Valley "
assert split_examples[1].text == "had loads of fun "
def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs"), "PERSON"), # "Mrs" is a Person
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", None, "O", "U-LOC", "O"]
def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
expected = ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
assert ner_tags == expected
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
entities = [
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
# additional whitespace tokens in GoldParse words
words, spaces = get_words_and_spaces(
["I", "flew", "to", "San Francisco", "Valley", "."],
"I flew to San Francisco Valley.",
)
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "I flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
gold_spaces = [True, True, False, True, False, False]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
def test_gold_biluo_4791(en_vocab, en_tokenizer):
doc = en_tokenizer("I'll return the A54 amount")
gold_words = ["I", "'ll", "return", "the", "A", "54", "amount"]
gold_spaces = [False, True, True, True, False, True, False]
entities = [(16, 19, "MONEY")]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "U-MONEY", "O"]
doc = en_tokenizer("I'll return the $54 amount")
gold_words = ["I", "'ll", "return", "the", "$", "54", "amount"]
gold_spaces = [False, True, True, True, False, True, False]
entities = [(16, 19, "MONEY")]
example = Example.from_dict(
doc, {"words": gold_words, "spaces": gold_spaces, "entities": entities}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "B-MONEY", "L-MONEY", "O"]
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
text = "I flew to Silicon Valley via London."
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
doc = en_tokenizer(text)
biluo_tags_converted = offsets_to_biluo_tags(doc, offsets)
assert biluo_tags_converted == biluo_tags
offsets_converted = biluo_tags_to_offsets(doc, biluo_tags)
offsets_converted = [ent for ent in offsets if ent[2]]
assert offsets_converted == offsets
def test_biluo_spans(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
spans = biluo_tags_to_spans(doc, biluo_tags)
spans = [span for span in spans if span.label_]
assert len(spans) == 2
assert spans[0].text == "Silicon Valley"
assert spans[0].label_ == "LOC"
assert spans[1].text == "London"
assert spans[1].label_ == "GPE"
def test_aligned_spans_y2x(en_vocab, en_tokenizer):
words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr and Mrs Smith flew to "
entities = [
(0, len("Mr and Mrs Smith"), "PERSON"),
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
# fmt: off
tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
# fmt: on
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
ents_ref = example.reference.ents
assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
ents_y2x = example.get_aligned_spans_y2x(ents_ref)
assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
def test_aligned_spans_x2y(en_vocab, en_tokenizer):
text = "Mr and Mrs Smith flew to San Francisco Valley"
nlp = English()
patterns = [
{"label": "PERSON", "pattern": "Mr and Mrs Smith"},
{"label": "LOC", "pattern": "San Francisco Valley"},
]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp(text)
assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
prefix = "Mr and Mrs Smith flew to "
entities = [
(0, len("Mr and Mrs Smith"), "PERSON"),
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
# Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
ents_pred = example.predicted.ents
assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
ents_x2y = example.get_aligned_spans_x2y(ents_pred)
assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
def test_aligned_spans_y2x_overlap(en_vocab, en_tokenizer):
text = "I flew to San Francisco Valley"
nlp = English()
doc = nlp(text)
# the reference doc has overlapping spans
gold_doc = nlp.make_doc(text)
spans = []
prefix = "I flew to "
spans.append(
gold_doc.char_span(len(prefix), len(prefix + "San Francisco"), label="CITY")
)
spans.append(
gold_doc.char_span(
len(prefix), len(prefix + "San Francisco Valley"), label="VALLEY"
)
)
spans_key = "overlap_ents"
gold_doc.spans[spans_key] = spans
example = Example(doc, gold_doc)
spans_gold = example.reference.spans[spans_key]
assert [(ent.start, ent.end) for ent in spans_gold] == [(3, 5), (3, 6)]
# Ensure that 'get_aligned_spans_y2x' has the aligned entities correct
spans_y2x_no_overlap = example.get_aligned_spans_y2x(
spans_gold, allow_overlap=False
)
assert [(ent.start, ent.end) for ent in spans_y2x_no_overlap] == [(3, 5)]
spans_y2x_overlap = example.get_aligned_spans_y2x(spans_gold, allow_overlap=True)
assert [(ent.start, ent.end) for ent in spans_y2x_overlap] == [(3, 5), (3, 6)]
def test_gold_ner_missing_tags(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
example = Example.from_dict(doc, {"entities": biluo_tags})
assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
def test_projectivize(en_tokenizer):
doc = en_tokenizer("He pretty quickly walks away")
heads = [3, 2, 3, 3, 2]
deps = ["dep"] * len(heads)
example = Example.from_dict(doc, {"heads": heads, "deps": deps})
proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
assert proj_heads == [3, 2, 3, 3, 3]
assert nonproj_heads == [3, 2, 3, 3, 2]
# Test single token documents
doc = en_tokenizer("Conrail")
heads = [0]
deps = ["dep"]
example = Example.from_dict(doc, {"heads": heads, "deps": deps})
proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
assert proj_heads == heads
assert proj_labels == deps
# Test documents with no alignments
doc_a = Doc(
doc.vocab, words=["Double-Jointed"], spaces=[False], deps=["ROOT"], heads=[0]
)
doc_b = Doc(
doc.vocab,
words=["Double", "-", "Jointed"],
spaces=[True, True, True],
deps=["amod", "punct", "ROOT"],
heads=[2, 2, 2],
)
example = Example(doc_a, doc_b)
proj_heads, proj_deps = example.get_aligned_parse(projectivize=True)
assert proj_heads == [None]
assert proj_deps == [None]
def test_iob_to_biluo():
good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
converted_biluo = iob_to_biluo(good_iob)
assert good_biluo == converted_biluo
with pytest.raises(ValueError):
iob_to_biluo(bad_iob)
def test_roundtrip_docs_to_docbin(doc):
text = doc.text
idx = [t.idx for t in doc]
tags = [t.tag_ for t in doc]
pos = [t.pos_ for t in doc]
morphs = [str(t.morph) for t in doc]
lemmas = [t.lemma_ for t in doc]
deps = [t.dep_ for t in doc]
heads = [t.head.i for t in doc]
cats = doc.cats
ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
# roundtrip to DocBin
with make_tempdir() as tmpdir:
# use a separate vocab to test that all labels are added
reloaded_nlp = English()
json_file = tmpdir / "roundtrip.json"
srsly.write_json(json_file, [docs_to_json(doc)])
output_file = tmpdir / "roundtrip.spacy"
DocBin(docs=[doc]).to_disk(output_file)
reader = Corpus(output_file)
reloaded_examples = list(reader(reloaded_nlp))
assert len(doc) == sum(len(eg) for eg in reloaded_examples)
reloaded_example = reloaded_examples[0]
assert text == reloaded_example.reference.text
assert idx == [t.idx for t in reloaded_example.reference]
assert tags == [t.tag_ for t in reloaded_example.reference]
assert pos == [t.pos_ for t in reloaded_example.reference]
assert morphs == [str(t.morph) for t in reloaded_example.reference]
assert lemmas == [t.lemma_ for t in reloaded_example.reference]
assert deps == [t.dep_ for t in reloaded_example.reference]
assert heads == [t.head.i for t in reloaded_example.reference]
assert ents == [
(e.start_char, e.end_char, e.label_) for e in reloaded_example.reference.ents
]
assert "TRAVEL" in reloaded_example.reference.cats
assert "BAKING" in reloaded_example.reference.cats
assert cats["TRAVEL"] == reloaded_example.reference.cats["TRAVEL"]
assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
def test_docbin_user_data_serialized(doc):
doc.user_data["check"] = True
nlp = English()
with make_tempdir() as tmpdir:
output_file = tmpdir / "userdata.spacy"
DocBin(docs=[doc], store_user_data=True).to_disk(output_file)
reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
reloaded_doc = list(reloaded_docs)[0]
assert reloaded_doc.user_data["check"] == True
def test_docbin_user_data_not_serialized(doc):
# this isn't serializable, but that shouldn't cause an error
doc.user_data["check"] = set()
nlp = English()
with make_tempdir() as tmpdir:
output_file = tmpdir / "userdata.spacy"
DocBin(docs=[doc], store_user_data=False).to_disk(output_file)
reloaded_docs = DocBin().from_disk(output_file).get_docs(nlp.vocab)
reloaded_doc = list(reloaded_docs)[0]
assert "check" not in reloaded_doc.user_data
@pytest.mark.parametrize(
"tokens_a,tokens_b,expected",
[
(["a", "b", "c"], ["ab", "c"], ([[0], [0], [1]], [[0, 1], [2]])),
(
["a", "b", '"', "c"],
['ab"', "c"],
([[0], [0], [0], [1]], [[0, 1, 2], [3]]),
),
(["a", "bc"], ["ab", "c"], ([[0], [0, 1]], [[0, 1], [1]])),
(
["ab", "c", "d"],
["a", "b", "cd"],
([[0, 1], [2], [2]], [[0], [0], [1, 2]]),
),
(
["a", "b", "cd"],
["a", "b", "c", "d"],
([[0], [1], [2, 3]], [[0], [1], [2], [2]]),
),
([" ", "a"], ["a"], ([[], [0]], [[1]])),
(
["a", "''", "'", ","],
["a'", "''", ","],
([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]),
),
],
)
def test_align(tokens_a, tokens_b, expected): # noqa
a2b, b2a = get_alignments(tokens_a, tokens_b)
assert (a2b, b2a) == expected # noqa
# check symmetry
a2b, b2a = get_alignments(tokens_b, tokens_a) # noqa
assert (b2a, a2b) == expected # noqa
def test_goldparse_startswith_space(en_tokenizer):
text = " a"
doc = en_tokenizer(text)
gold_words = ["a"]
entities = ["U-DATE"]
deps = ["ROOT"]
heads = [0]
example = Example.from_dict(
doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "U-DATE"]
assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]
def test_goldparse_endswith_space(en_tokenizer):
text = "a\n"
doc = en_tokenizer(text)
gold_words = ["a"]
entities = ["U-DATE"]
deps = ["ROOT"]
heads = [0]
example = Example.from_dict(
doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
)
ner_tags = example.get_aligned_ner()
assert ner_tags == ["U-DATE", "O"]
assert example.get_aligned("DEP", as_string=True) == ["ROOT", None]
def test_gold_constructor():
"""Test that the Example constructor works fine"""
nlp = English()
doc = nlp("This is a sentence")
example = Example.from_dict(doc, {"cats": {"cat1": 1.0, "cat2": 0.0}})
assert example.get_aligned("ORTH", as_string=True) == [
"This",
"is",
"a",
"sentence",
]
assert example.reference.cats["cat1"]
assert not example.reference.cats["cat2"]
def test_tuple_format_implicit():
"""Test tuple format"""
train_data = [
("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
(
"Spotify steps up Asia expansion",
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
]
_train_tuples(train_data)
def test_tuple_format_implicit_invalid():
"""Test that an error is thrown for an implicit invalid field"""
train_data = [
("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
(
"Spotify steps up Asia expansion",
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
]
with pytest.raises(KeyError):
_train_tuples(train_data)
def _train_tuples(train_data):
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("ORG")
ner.add_label("LOC")
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize()
for i in range(5):
losses = {}
batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
nlp.update(batch, sgd=optimizer, losses=losses)
def test_split_sents(merged_dict):
nlp = English()
example = Example.from_dict(
Doc(nlp.vocab, words=merged_dict["words"], spaces=merged_dict["spaces"]),
merged_dict,
)
assert example.text == "Hi there everyone It is just me"
split_examples = example.split_sents()
assert len(split_examples) == 2
assert split_examples[0].text == "Hi there everyone "
assert split_examples[1].text == "It is just me"
token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
assert token_annotation_1["SENT_START"] == [1, 0, 0]
token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
assert token_annotation_2["SENT_START"] == [1, 0, 0, 0]
def test_alignment():
other_tokens = ["i", "listened", "to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
def test_alignment_array():
a = AlignmentArray([[0, 1, 2], [3], [], [4, 5, 6, 7], [8, 9]])
assert list(a.data) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
assert list(a.lengths) == [3, 1, 0, 4, 2]
assert list(a[3]) == [4, 5, 6, 7]
assert list(a[2]) == []
assert list(a[-2]) == [4, 5, 6, 7]
assert list(a[1:4]) == [3, 4, 5, 6, 7]
assert list(a[1:]) == [3, 4, 5, 6, 7, 8, 9]
assert list(a[:3]) == [0, 1, 2, 3]
assert list(a[:]) == list(a.data)
assert list(a[0:0]) == []
assert list(a[3:3]) == []
assert list(a[-1:-1]) == []
with pytest.raises(ValueError, match=r"only supports slicing with a step of 1"):
a[:4:-1]
with pytest.raises(
ValueError, match=r"only supports indexing using an int or a slice"
):
a[[0, 1, 3]]
a = AlignmentArray([[], [1, 2, 3], [4, 5]])
assert list(a[0]) == []
assert list(a[0:1]) == []
assert list(a[2]) == [4, 5]
assert list(a[0:2]) == [1, 2, 3]
a = AlignmentArray([[1, 2, 3], [4, 5], []])
assert list(a[-1]) == []
assert list(a[-2:]) == [4, 5]
def test_alignment_case_insensitive():
other_tokens = ["I", "listened", "to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "Obama", "'s", "PODCASTS", "."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 1, 1]
assert list(align.y2x.data) == [0, 1, 2, 3, 4, 5, 6, 7]
def test_alignment_complex():
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
def test_alignment_complex_example(en_vocab):
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
predicted = Doc(
en_vocab, words=other_tokens, spaces=[True, False, False, True, False, False]
)
reference = Doc(
en_vocab, words=spacy_tokens, spaces=[True, True, True, False, True, False]
)
assert predicted.text == "i listened to obama's podcasts."
assert reference.text == "i listened to obama's podcasts."
example = Example(predicted, reference)
align = example.alignment
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
def test_alignment_different_texts():
other_tokens = ["she", "listened", "to", "obama", "'s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts", "."]
with pytest.raises(ValueError):
Alignment.from_strings(other_tokens, spacy_tokens)
def test_alignment_spaces(en_vocab):
# single leading whitespace
other_tokens = [" ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [1, 1, 1, 2, 3, 4, 5, 6]
# multiple leading whitespace tokens
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [2, 2, 2, 3, 4, 5, 6, 7]
# both with leading whitespace, not identical
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [0, 2, 2, 2, 3, 4, 5, 6, 7]
# same leading whitespace, different tokenization
other_tokens = [" ", " ", "i listened to", "obama", "'", "s", "podcasts", "."]
spacy_tokens = [" ", "i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [1, 1, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 0, 1, 2, 3, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [2, 1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [0, 1, 2, 2, 2, 3, 4, 5, 6, 7]
# only one with trailing whitespace
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts."]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 0]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5]
# different trailing whitespace
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 0]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 1]
assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6]
# same trailing whitespace, different tokenization
other_tokens = ["i listened to", "obama", "'", "s", "podcasts", ".", " ", " "]
spacy_tokens = ["i", "listened", "to", "obama", "'s", "podcasts.", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [3, 1, 1, 1, 1, 1, 1, 1]
assert list(align.x2y.data) == [0, 1, 2, 3, 4, 4, 5, 5, 6, 6]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2, 2]
assert list(align.y2x.data) == [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]
# differing whitespace is allowed
other_tokens = ["a", " \n ", "b", "c"]
spacy_tokens = ["a", "b", " ", "c"]
align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.data) == [0, 1, 3]
assert list(align.y2x.data) == [0, 2, 3]
# other differences in whitespace are allowed
other_tokens = [" ", "a"]
spacy_tokens = [" ", "a", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
other_tokens = ["a", " "]
spacy_tokens = ["a", " "]
align = Alignment.from_strings(other_tokens, spacy_tokens)
def test_retokenized_docs(doc):
a = doc.to_array(["TAG"])
doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a)
example = Example(doc1, doc2)
# fmt: off
expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
expected2 = [None, "sister", "flew", "to", None, "via", "London", "."]
# fmt: on
assert example.get_aligned("ORTH", as_string=True) == expected1
with doc1.retokenize() as retokenizer:
retokenizer.merge(doc1[0:2])
retokenizer.merge(doc1[5:7])
assert example.get_aligned("ORTH", as_string=True) == expected2
def test_training_before_update(doc):
def before_update(nlp, args):
assert args["step"] == 0
assert args["epoch"] == 1
# Raise an error here as the rest of the loop
# will not run to completion due to uninitialized
# models.
raise ValueError("ran_before_update")
def generate_batch():
yield 1, [Example(doc, doc)]
nlp = spacy.blank("en")
nlp.add_pipe("tagger")
optimizer = Adam()
generator = train_while_improving(
nlp,
optimizer,
generate_batch(),
lambda: None,
dropout=0.1,
eval_frequency=100,
accumulate_gradient=10,
patience=10,
max_steps=100,
exclude=[],
annotating_components=[],
before_update=before_update,
)
with pytest.raises(ValueError, match="ran_before_update"):
for _ in generator:
pass