mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			107 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.training import Example
 | 
						|
from spacy import util
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("Who is Shaka S Khan?", {"entities": [(7, 19, "PERSON")]}),
 | 
						|
    ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def test_no_label():
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("simple_ner")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.begin_training()
 | 
						|
 | 
						|
 | 
						|
def test_implicit_label():
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    train_examples = []
 | 
						|
    ner.add_label("ORG")
 | 
						|
    for t in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | 
						|
    nlp.begin_training(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Should be fixed")
 | 
						|
def test_untrained():
 | 
						|
    # This shouldn't crash, but it does when the simple_ner produces an invalid sequence like ['L-PERSON', 'L-ORG']
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    ner.add_label("PERSON")
 | 
						|
    ner.add_label("LOC")
 | 
						|
    ner.add_label("ORG")
 | 
						|
    nlp.begin_training()
 | 
						|
    nlp("Example sentence")
 | 
						|
 | 
						|
 | 
						|
def test_resize():
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    ner.add_label("PERSON")
 | 
						|
    ner.add_label("LOC")
 | 
						|
    nlp.begin_training()
 | 
						|
    assert len(ner.labels) == 2
 | 
						|
    ner.add_label("ORG")
 | 
						|
    nlp.begin_training()
 | 
						|
    assert len(ner.labels) == 3
 | 
						|
 | 
						|
 | 
						|
def test_begin_training_examples():
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for ent in annotations.get("entities"):
 | 
						|
            ner.add_label(ent[2])
 | 
						|
    # you shouldn't really call this more than once, but for testing it should be fine
 | 
						|
    nlp.begin_training()
 | 
						|
    nlp.begin_training(get_examples=lambda: train_examples)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.begin_training(get_examples=lambda: None)
 | 
						|
    with pytest.raises(TypeError):
 | 
						|
        nlp.begin_training(get_examples=lambda: train_examples[0])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.begin_training(get_examples=lambda: [])
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.begin_training(get_examples=train_examples)
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the SimpleNER component - ensuring the ML models work correctly
 | 
						|
    nlp = English()
 | 
						|
    ner = nlp.add_pipe("simple_ner")
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
    optimizer = nlp.begin_training(get_examples=lambda: train_examples)
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["ner"] < 0.0001
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I like London."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    ents = doc.ents
 | 
						|
    assert len(ents) == 1
 | 
						|
    assert ents[0].text == "London"
 | 
						|
    assert ents[0].label_ == "LOC"
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        ents2 = doc2.ents
 | 
						|
        assert len(ents2) == 1
 | 
						|
        assert ents2[0].text == "London"
 | 
						|
        assert ents2[0].label_ == "LOC"
 |