mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			118 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import unicode_literals
 | 
						|
 | 
						|
import numpy
 | 
						|
import msgpack
 | 
						|
import gzip
 | 
						|
from thinc.neural.ops import NumpyOps
 | 
						|
 | 
						|
from ..compat import copy_reg
 | 
						|
from ..tokens import Doc
 | 
						|
from ..attrs import SPACY, ORTH
 | 
						|
 | 
						|
 | 
						|
class Binder(object):
 | 
						|
    '''Serialize analyses from a collection of doc objects.'''
 | 
						|
    def __init__(self, attrs=None):
 | 
						|
        '''Create a Binder object, to hold serialized annotations.
 | 
						|
        
 | 
						|
        attrs (list):
 | 
						|
            List of attributes to serialize. 'orth' and 'spacy' are always
 | 
						|
            serialized, so they're not required. Defaults to None.
 | 
						|
        '''
 | 
						|
        attrs = attrs or []
 | 
						|
        self.attrs = list(attrs)
 | 
						|
        # Ensure ORTH is always attrs[0]
 | 
						|
        if ORTH in self.attrs:
 | 
						|
            self.attrs.pop(ORTH)
 | 
						|
        if SPACY in self.attrs:
 | 
						|
            self.attrs.pop(SPACY)
 | 
						|
        self.attrs.insert(0, ORTH)
 | 
						|
        self.tokens = []
 | 
						|
        self.spaces = []
 | 
						|
        self.strings = set()
 | 
						|
 | 
						|
    def add(self, doc):
 | 
						|
        '''Add a doc's annotations to the binder for serialization.'''
 | 
						|
        array = doc.to_array(self.attrs)
 | 
						|
        if len(array.shape) == 1:
 | 
						|
            array = array.reshape((array.shape[0], 1))
 | 
						|
        self.tokens.append(array)
 | 
						|
        spaces = doc.to_array(SPACY)
 | 
						|
        assert array.shape[0] == spaces.shape[0]
 | 
						|
        spaces = spaces.reshape((spaces.shape[0], 1))
 | 
						|
        self.spaces.append(numpy.asarray(spaces, dtype=bool))
 | 
						|
        self.strings.update(w.text for w in doc)
 | 
						|
 | 
						|
    def get_docs(self, vocab):
 | 
						|
        '''Recover Doc objects from the annotations, using the given vocab.'''
 | 
						|
        attrs = self.attrs
 | 
						|
        for string in self.strings:
 | 
						|
            vocab[string]
 | 
						|
        orth_col = self.attrs.index(ORTH)
 | 
						|
        for tokens, spaces in zip(self.tokens, self.spaces):
 | 
						|
            words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
 | 
						|
            doc = Doc(vocab, words=words, spaces=spaces)
 | 
						|
            doc = doc.from_array(self.attrs, tokens)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    def merge(self, other):
 | 
						|
        '''Extend the annotations of this binder with the annotations from another.'''
 | 
						|
        assert self.attrs == other.attrs
 | 
						|
        self.tokens.extend(other.tokens)
 | 
						|
        self.spaces.extend(other.spaces)
 | 
						|
        self.strings.update(other.strings)
 | 
						|
 | 
						|
    def to_bytes(self):
 | 
						|
        '''Serialize the binder's annotations into a byte string.'''
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape
 | 
						|
        lengths = [len(tokens) for tokens in self.tokens]
 | 
						|
        msg = {
 | 
						|
            'attrs': self.attrs,
 | 
						|
            'tokens': numpy.vstack(self.tokens).tobytes('C'),
 | 
						|
            'spaces': numpy.vstack(self.spaces).tobytes('C'),
 | 
						|
            'lengths': numpy.asarray(lengths, dtype='int32').tobytes('C'),
 | 
						|
            'strings': list(self.strings)
 | 
						|
        }
 | 
						|
        return gzip.compress(msgpack.dumps(msg))
 | 
						|
 | 
						|
    def from_bytes(self, string):
 | 
						|
        '''Deserialize the binder's annotations from a byte string.'''
 | 
						|
        msg = msgpack.loads(gzip.decompress(string))
 | 
						|
        self.attrs = msg['attrs']
 | 
						|
        self.strings = set(msg['strings'])
 | 
						|
        lengths = numpy.fromstring(msg['lengths'], dtype='int32')
 | 
						|
        flat_spaces = numpy.fromstring(msg['spaces'], dtype=bool)
 | 
						|
        flat_tokens = numpy.fromstring(msg['tokens'], dtype='uint64')
 | 
						|
        shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
 | 
						|
        flat_tokens = flat_tokens.reshape(shape)
 | 
						|
        flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
 | 
						|
        self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
 | 
						|
        self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
 | 
						|
        for tokens in self.tokens:
 | 
						|
            assert len(tokens.shape) == 2, tokens.shape
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
def merge_bytes(binder_strings):
 | 
						|
    '''Concatenate multiple serialized binders into one byte string.'''
 | 
						|
    output = None
 | 
						|
    for byte_string in binder_strings:
 | 
						|
        binder = Binder().from_bytes(byte_string)
 | 
						|
        if output is None:
 | 
						|
            output = binder
 | 
						|
        else:
 | 
						|
            output.merge(binder)
 | 
						|
    return output.to_bytes()
 | 
						|
 | 
						|
 | 
						|
def pickle_binder(binder):
 | 
						|
    return (unpickle_binder, (binder.to_bytes(),))
 | 
						|
 | 
						|
 | 
						|
def unpickle_binder(byte_string):
 | 
						|
    return Binder().from_bytes(byte_string)
 | 
						|
 | 
						|
 | 
						|
copy_reg.pickle(Binder, pickle_binder, unpickle_binder)
 |