spaCy/spacy/ml/models/span_predictor.py
2022-05-24 17:28:27 +09:00

242 lines
8.6 KiB
Python

from typing import List, Tuple
from thinc.api import Model, chain, tuplify
from thinc.api import PyTorchWrapper, ArgsKwargs
from thinc.types import Floats2d, Ints1d
from thinc.util import torch, xp2torch, torch2xp
from ...tokens import Doc
from ...util import registry
from .coref_util import get_sentence_ids
@registry.architectures("spacy.SpanPredictor.v1")
def build_span_predictor(
tok2vec: Model[List[Doc], List[Floats2d]],
hidden_size: int = 1024,
distance_embedding_size: int = 64,
conv_channels: int = 4,
window_size: int = 1,
max_distance: int = 128,
prefix: str = "coref_head_clusters"
):
# TODO add model return types
# TODO fix this
try:
dim = tok2vec.get_dim("nO")
except ValueError:
# happens with transformer listener
dim = 768
with Model.define_operators({">>": chain, "&": tuplify}):
span_predictor = PyTorchWrapper(
SpanPredictor(
dim,
hidden_size,
distance_embedding_size,
conv_channels,
window_size,
max_distance
),
convert_inputs=convert_span_predictor_inputs,
)
# TODO use proper parameter for prefix
head_info = build_get_head_metadata(prefix)
model = (tok2vec & head_info) >> span_predictor
return model
def convert_span_predictor_inputs(
model: Model, X: Tuple[Ints1d, Floats2d, Ints1d], is_train: bool
):
tok2vec, (sent_ids, head_ids) = X
# Normally we should use the input is_train, but for these two it's not relevant
def backprop(args: ArgsKwargs) -> List[Floats2d]:
gradients = torch2xp(args.args[1])
return [[gradients], None]
word_features = xp2torch(tok2vec[0], requires_grad=is_train)
sent_ids = xp2torch(sent_ids[0], requires_grad=False)
if not head_ids[0].size:
head_ids = torch.empty(size=(0,))
else:
head_ids = xp2torch(head_ids[0], requires_grad=False)
argskwargs = ArgsKwargs(args=(sent_ids, word_features, head_ids), kwargs={})
return argskwargs, backprop
# TODO This probably belongs in the component, not the model.
def predict_span_clusters(
span_predictor: Model, sent_ids: Ints1d, words: Floats2d, clusters: List[Ints1d]
):
"""
Predicts span clusters based on the word clusters.
span_predictor: a SpanPredictor instance
sent_ids: For each word indicates, which sentence it appears in.
words: Features for words.
clusters: Clusters inferred by the CorefScorer.
Returns:
List[List[Tuple[int, int]]: span clusters
"""
if not clusters:
return []
xp = span_predictor.ops.xp
heads_ids = xp.asarray(sorted(i for cluster in clusters for i in cluster))
scores = span_predictor.predict((sent_ids, words, heads_ids))
starts = scores[:, :, 0].argmax(axis=1).tolist()
ends = (scores[:, :, 1].argmax(axis=1) + 1).tolist()
head2span = {
head: (start, end) for head, start, end in zip(heads_ids.tolist(), starts, ends)
}
return [[head2span[head] for head in cluster] for cluster in clusters]
def build_get_head_metadata(prefix):
# TODO this name is awful, fix it
model = Model(
"HeadDataProvider", attrs={"prefix": prefix}, forward=head_data_forward
)
return model
def head_data_forward(model, docs, is_train):
"""A layer to generate the extra data needed for the span predictor."""
sent_ids = []
head_ids = []
prefix = model.attrs["prefix"]
for doc in docs:
sids = model.ops.asarray2i(get_sentence_ids(doc))
sent_ids.append(sids)
heads = []
for key, sg in doc.spans.items():
if not key.startswith(prefix):
continue
for span in sg:
# TODO warn if spans are more than one token
heads.append(span[0].i)
heads = model.ops.asarray2i(heads)
head_ids.append(heads)
# each of these is a list with one entry per doc
# backprop is just a placeholder
# TODO it would probably be better to have a list of tuples than two lists of arrays
return (sent_ids, head_ids), lambda x: []
# TODO this should maybe have a different name from the component
class SpanPredictor(torch.nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
dist_emb_size: int,
conv_channels: int,
window_size: int,
max_distance: int
):
super().__init__()
if max_distance % 2 != 0:
raise ValueError(
"max_distance has to be an even number"
)
# input size = single token size
# 64 = probably distance emb size
# TODO check that dist_emb_size use is correct
self.ffnn = torch.nn.Sequential(
torch.nn.Linear(input_size * 2 + dist_emb_size, hidden_size),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
# TODO seems weird the 256 isn't a parameter???
torch.nn.Linear(hidden_size, 256),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
# this use of dist_emb_size looks wrong but it was 64...?
torch.nn.Linear(256, dist_emb_size),
)
kernel_size = window_size * 2 + 1
self.conv = torch.nn.Sequential(
torch.nn.Conv1d(dist_emb_size, conv_channels, kernel_size, 1, 1),
torch.nn.Conv1d(conv_channels, 2, kernel_size, 1, 1)
)
# TODO make embeddings size a parameter
self.max_distance = max_distance
# handle distances between +-(max_distance - 2 / 2)
self.emb = torch.nn.Embedding(max_distance, dist_emb_size)
def forward(
self,
sent_id,
words: torch.Tensor,
heads_ids: torch.Tensor,
) -> torch.Tensor:
"""
Calculates span start/end scores of words for each span
for each head.
sent_id: Sentence id of each word.
words: features for each word in the document.
heads_ids: word indices of span heads
Returns:
torch.Tensor: span start/end scores, (n_heads x n_words x 2)
"""
# If we don't receive heads, return empty
if heads_ids.nelement() == 0:
return torch.empty(size=(0,))
# Obtain distance embedding indices, [n_heads, n_words]
relative_positions = heads_ids.unsqueeze(1) - torch.arange(
words.shape[0]
).unsqueeze(0)
md = self.max_distance
# make all valid distances positive
emb_ids = relative_positions + (md - 2) // 2
# "too_far"
emb_ids[(emb_ids < 0) + (emb_ids > md - 2)] = md - 1
# Obtain "same sentence" boolean mask: (n_heads x n_words)
heads_ids = heads_ids.long()
same_sent = sent_id[heads_ids].unsqueeze(1) == sent_id.unsqueeze(0)
# To save memory, only pass candidates from one sentence for each head
# pair_matrix contains concatenated span_head_emb + candidate_emb + distance_emb
# for each candidate among the words in the same sentence as span_head
# (n_heads x input_size * 2 x distance_emb_size)
rows, cols = same_sent.nonzero(as_tuple=True)
pair_matrix = torch.cat(
(
words[heads_ids[rows]],
words[cols],
self.emb(emb_ids[rows, cols]),
),
dim=1,
)
lengths = same_sent.sum(dim=1)
padding_mask = torch.arange(0, lengths.max().item()).unsqueeze(0)
# (n_heads x max_sent_len)
padding_mask = padding_mask < lengths.unsqueeze(1)
# (n_heads x max_sent_len x input_size * 2 + distance_emb_size)
# This is necessary to allow the convolution layer to look at several
# word scores
padded_pairs = torch.zeros(*padding_mask.shape, pair_matrix.shape[-1])
padded_pairs[padding_mask] = pair_matrix
res = self.ffnn(padded_pairs) # (n_heads x n_candidates x last_layer_output)
res = self.conv(res.permute(0, 2, 1)).permute(
0, 2, 1
) # (n_heads x n_candidates, 2)
scores = torch.full((heads_ids.shape[0], words.shape[0], 2), float("-inf"))
scores[rows, cols] = res[padding_mask]
# Make sure that start <= head <= end during inference
if not self.training:
valid_starts = torch.log((relative_positions >= 0).to(torch.float))
valid_ends = torch.log((relative_positions <= 0).to(torch.float))
valid_positions = torch.stack((valid_starts, valid_ends), dim=2)
return scores + valid_positions
return scores