mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 13:47:13 +03:00
554df9ef20
* Rename all MDX file to `.mdx`
* Lock current node version (#11885)
* Apply Prettier (#11996)
* Minor website fixes (#11974) [ci skip]
* fix table
* Migrate to Next WEB-17 (#12005)
* Initial commit
* Run `npx create-next-app@13 next-blog`
* Install MDX packages
Following: 77b5f79a4d/packages/next-mdx/readme.md
* Add MDX to Next
* Allow Next to handle `.md` and `.mdx` files.
* Add VSCode extension recommendation
* Disabled TypeScript strict mode for now
* Add prettier
* Apply Prettier to all files
* Make sure to use correct Node version
* Add basic implementation for `MDXRemote`
* Add experimental Rust MDX parser
* Add `/public`
* Add SASS support
* Remove default pages and styling
* Convert to module
This allows to use `import/export` syntax
* Add import for custom components
* Add ability to load plugins
* Extract function
This will make the next commit easier to read
* Allow to handle directories for page creation
* Refactoring
* Allow to parse subfolders for pages
* Extract logic
* Redirect `index.mdx` to parent directory
* Disabled ESLint during builds
* Disabled typescript during build
* Remove Gatsby from `README.md`
* Rephrase Docker part of `README.md`
* Update project structure in `README.md`
* Move and rename plugins
* Update plugin for wrapping sections
* Add dependencies for plugin
* Use plugin
* Rename wrapper type
* Simplify unnessary adding of id to sections
The slugified section ids are useless, because they can not be referenced anywhere anyway. The navigation only works if the section has the same id as the heading.
* Add plugin for custom attributes on Markdown elements
* Add plugin to readd support for tables
* Add plugin to fix problem with wrapped images
For more details see this issue: https://github.com/mdx-js/mdx/issues/1798
* Add necessary meta data to pages
* Install necessary dependencies
* Remove outdated MDX handling
* Remove reliance on `InlineList`
* Use existing Remark components
* Remove unallowed heading
Before `h1` components where not overwritten and would never have worked and they aren't used anywhere either.
* Add missing components to MDX
* Add correct styling
* Fix broken list
* Fix broken CSS classes
* Implement layout
* Fix links
* Fix broken images
* Fix pattern image
* Fix heading attributes
* Rename heading attribute
`new` was causing some weird issue, so renaming it to `version`
* Update comment syntax in MDX
* Merge imports
* Fix markdown rendering inside components
* Add model pages
* Simplify anchors
* Fix default value for theme
* Add Universe index page
* Add Universe categories
* Add Universe projects
* Fix Next problem with copy
Next complains when the server renders something different then the client, therfor we move the differing logic to `useEffect`
* Fix improper component nesting
Next doesn't allow block elements inside a `<p>`
* Replace landing page MDX with page component
* Remove inlined iframe content
* Remove ability to inline HTML content in iFrames
* Remove MDX imports
* Fix problem with image inside link in MDX
* Escape character for MDX
* Fix unescaped characters in MDX
* Fix headings with logo
* Allow to export static HTML pages
* Add prebuild script
This command is automatically run by Next
* Replace `svg-loader` with `react-inlinesvg`
`svg-loader` is no longer maintained
* Fix ESLint `react-hooks/exhaustive-deps`
* Fix dropdowns
* Change code language from `cli` to `bash`
* Remove unnessary language `none`
* Fix invalid code language
`markdown_` with an underscore was used to basically turn of syntax highlighting, but using unknown languages know throws an error.
* Enable code blocks plugin
* Readd `InlineCode` component
MDX2 removed the `inlineCode` component
> The special component name `inlineCode` was removed, we recommend to use `pre` for the block version of code, and code for both the block and inline versions
Source: https://mdxjs.com/migrating/v2/#update-mdx-content
* Remove unused code
* Extract function to own file
* Fix code syntax highlighting
* Update syntax for code block meta data
* Remove unused prop
* Fix internal link recognition
There is a problem with regex between Node and browser, and since Next runs the component on both, this create an error.
`Prop `rel` did not match. Server: "null" Client: "noopener nofollow noreferrer"`
This simplifies the implementation and fixes the above error.
* Replace `react-helmet` with `next/head`
* Fix `className` problem for JSX component
* Fix broken bold markdown
* Convert file to `.mjs` to be used by Node process
* Add plugin to replace strings
* Fix custom table row styling
* Fix problem with `span` inside inline `code`
React doesn't allow a `span` inside an inline `code` element and throws an error in dev mode.
* Add `_document` to be able to customize `<html>` and `<body>`
* Add `lang="en"`
* Store Netlify settings in file
This way we don't need to update via Netlify UI, which can be tricky if changing build settings.
* Add sitemap
* Add Smartypants
* Add PWA support
* Add `manifest.webmanifest`
* Fix bug with anchor links after reloading
There was no need for the previous implementation, since the browser handles this nativly. Additional the manual scrolling into view was actually broken, because the heading would disappear behind the menu bar.
* Rename custom event
I was googeling for ages to find out what kind of event `inview` is, only to figure out it was a custom event with a name that sounds pretty much like a native one. 🫠
* Fix missing comment syntax highlighting
* Refactor Quickstart component
The previous implementation was hidding the irrelevant lines via data-props and dynamically generated CSS. This created problems with Next and was also hard to follow. CSS was used to do what React is supposed to handle.
The new implementation simplfy filters the list of children (React elements) via their props.
* Fix syntax highlighting for Training Quickstart
* Unify code rendering
* Improve error logging in Juniper
* Fix Juniper component
* Automatically generate "Read Next" link
* Add Plausible
* Use recent DocSearch component and adjust styling
* Fix images
* Turn of image optimization
> Image Optimization using Next.js' default loader is not compatible with `next export`.
We currently deploy to Netlify via `next export`
* Dont build pages starting with `_`
* Remove unused files
* Add Next plugin to Netlify
* Fix button layout
MDX automatically adds `p` tags around text on a new line and Prettier wants to put the text on a new line. Hacking with JSX string.
* Add 404 page
* Apply Prettier
* Update Prettier for `package.json`
Next sometimes wants to patch `package-lock.json`. The old Prettier setting indended with 4 spaces, but Next always indends with 2 spaces. Since `npm install` automatically uses the indendation from `package.json` for `package-lock.json` and to avoid the format switching back and forth, both files are now set to 2 spaces.
* Apply Next patch to `package-lock.json`
When starting the dev server Next would warn `warn - Found lockfile missing swc dependencies, patching...` and update the `package-lock.json`. These are the patched changes.
* fix link
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* small backslash fixes
* adjust to new style
Co-authored-by: Marcus Blättermann <marcus@essenmitsosse.de>
333 lines
22 KiB
Plaintext
333 lines
22 KiB
Plaintext
---
|
|
title: Scorer
|
|
teaser: Compute evaluation scores
|
|
tag: class
|
|
source: spacy/scorer.py
|
|
---
|
|
|
|
The `Scorer` computes evaluation scores. It's typically created by
|
|
[`Language.evaluate`](/api/language#evaluate). In addition, the `Scorer`
|
|
provides a number of evaluation methods for evaluating [`Token`](/api/token) and
|
|
[`Doc`](/api/doc) attributes.
|
|
|
|
## Scorer.\_\_init\_\_ {id="init",tag="method"}
|
|
|
|
Create a new `Scorer`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.scorer import Scorer
|
|
>
|
|
> # Default scoring pipeline
|
|
> scorer = Scorer()
|
|
>
|
|
> # Provided scoring pipeline
|
|
> nlp = spacy.load("en_core_web_sm")
|
|
> scorer = Scorer(nlp)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `nlp` | The pipeline to use for scoring, where each pipeline component may provide a scoring method. If none is provided, then a default pipeline is constructed using the `default_lang` and `default_pipeline` settings. ~~Optional[Language]~~ |
|
|
| `default_lang` | The language to use for a default pipeline if `nlp` is not provided. Defaults to `xx`. ~~str~~ |
|
|
| `default_pipeline` | The pipeline components to use for a default pipeline if `nlp` is not provided. Defaults to `("senter", "tagger", "morphologizer", "parser", "ner", "textcat")`. ~~Iterable[string]~~ |
|
|
| _keyword-only_ | |
|
|
| `\*\*kwargs` | Any additional settings to pass on to the individual scoring methods. ~~Any~~ |
|
|
|
|
## Scorer.score {id="score",tag="method"}
|
|
|
|
Calculate the scores for a list of [`Example`](/api/example) objects using the
|
|
scoring methods provided by the components in the pipeline.
|
|
|
|
The returned `Dict` contains the scores provided by the individual pipeline
|
|
components. For the scoring methods provided by the `Scorer` and used by the
|
|
core pipeline components, the individual score names start with the `Token` or
|
|
`Doc` attribute being scored:
|
|
|
|
- `token_acc`, `token_p`, `token_r`, `token_f`
|
|
- `sents_p`, `sents_r`, `sents_f`
|
|
- `tag_acc`
|
|
- `pos_acc`
|
|
- `morph_acc`, `morph_micro_p`, `morph_micro_r`, `morph_micro_f`,
|
|
`morph_per_feat`
|
|
- `lemma_acc`
|
|
- `dep_uas`, `dep_las`, `dep_las_per_type`
|
|
- `ents_p`, `ents_r` `ents_f`, `ents_per_type`
|
|
- `spans_sc_p`, `spans_sc_r`, `spans_sc_f`
|
|
- `cats_score` (depends on config, description provided in `cats_score_desc`),
|
|
`cats_micro_p`, `cats_micro_r`, `cats_micro_f`, `cats_macro_p`,
|
|
`cats_macro_r`, `cats_macro_f`, `cats_macro_auc`, `cats_f_per_type`,
|
|
`cats_auc_per_type`
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scorer = Scorer()
|
|
> scores = scorer.score(examples)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| **RETURNS** | A dictionary of scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
|
|
|
## Scorer.score_tokenization {id="score_tokenization",tag="staticmethod",version="3"}
|
|
|
|
Scores the tokenization:
|
|
|
|
- `token_acc`: number of correct tokens / number of predicted tokens
|
|
- `token_p`, `token_r`, `token_f`: precision, recall and F-score for token
|
|
character spans
|
|
|
|
Docs with `has_unknown_spaces` are skipped during scoring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = Scorer.score_tokenization(examples)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------ |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc`, `token_p`, `token_r`, `token_f`. ~~Dict[str, float]]~~ |
|
|
|
|
## Scorer.score_token_attr {id="score_token_attr",tag="staticmethod",version="3"}
|
|
|
|
Scores a single token attribute. Tokens with missing values in the reference doc
|
|
are skipped during scoring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = Scorer.score_token_attr(examples, "pos")
|
|
> print(scores["pos_acc"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| `attr` | The attribute to score. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `getter` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. ~~Callable[[Token, str], Any]~~ |
|
|
| `missing_values` | Attribute values to treat as missing annotation in the reference annotation. Defaults to `{0, None, ""}`. ~~Set[Any]~~ |
|
|
| **RETURNS** | A dictionary containing the score `{attr}_acc`. ~~Dict[str, float]~~ |
|
|
|
|
## Scorer.score_token_attr_per_feat {id="score_token_attr_per_feat",tag="staticmethod",version="3"}
|
|
|
|
Scores a single token attribute per feature for a token attribute in the
|
|
Universal Dependencies
|
|
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
|
|
format. Tokens with missing values in the reference doc are skipped during
|
|
scoring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = Scorer.score_token_attr_per_feat(examples, "morph")
|
|
> print(scores["morph_per_feat"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| `attr` | The attribute to score. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `getter` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. ~~Callable[[Token, str], Any]~~ |
|
|
| `missing_values` | Attribute values to treat as missing annotation in the reference annotation. Defaults to `{0, None, ""}`. ~~Set[Any]~~ |
|
|
| **RETURNS** | A dictionary containing the micro PRF scores under the key `{attr}_micro_p/r/f` and the per-feature PRF scores under `{attr}_per_feat`. ~~Dict[str, Dict[str, float]]~~ |
|
|
|
|
## Scorer.score_spans {id="score_spans",tag="staticmethod",version="3"}
|
|
|
|
Returns PRF scores for labeled or unlabeled spans.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = Scorer.score_spans(examples, "ents")
|
|
> print(scores["ents_f"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| `attr` | The attribute to score. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `getter` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. ~~Callable[[Doc, str], Iterable[Span]]~~ |
|
|
| `has_annotation` | Defaults to `None`. If provided, `has_annotation(doc)` should return whether a `Doc` has annotation for this `attr`. Docs without annotation are skipped for scoring purposes. ~~str~~ |
|
|
| `labeled` | Defaults to `True`. If set to `False`, two spans will be considered equal if their start and end match, irrespective of their label. ~~bool~~ |
|
|
| `allow_overlap` | Defaults to `False`. Whether or not to allow overlapping spans. If set to `False`, the alignment will automatically resolve conflicts. ~~bool~~ |
|
|
| **RETURNS** | A dictionary containing the PRF scores under the keys `{attr}_p`, `{attr}_r`, `{attr}_f` and the per-type PRF scores under `{attr}_per_type`. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
|
|
|
## Scorer.score_deps {id="score_deps",tag="staticmethod",version="3"}
|
|
|
|
Calculate the UAS, LAS, and LAS per type scores for dependency parses. Tokens
|
|
with missing values for the `attr` (typically `dep`) are skipped during scoring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> def dep_getter(token, attr):
|
|
> dep = getattr(token, attr)
|
|
> dep = token.vocab.strings.as_string(dep).lower()
|
|
> return dep
|
|
>
|
|
> scores = Scorer.score_deps(
|
|
> examples,
|
|
> "dep",
|
|
> getter=dep_getter,
|
|
> ignore_labels=("p", "punct")
|
|
> )
|
|
> print(scores["dep_uas"], scores["dep_las"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| `attr` | The attribute to score. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `getter` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. ~~Callable[[Token, str], Any]~~ |
|
|
| `head_attr` | The attribute containing the head token. ~~str~~ |
|
|
| `head_getter` | Defaults to `getattr`. If provided, `head_getter(token, attr)` should return the head for an individual `Token`. ~~Callable[[Doc, str], Token]~~ |
|
|
| `ignore_labels` | Labels to ignore while scoring (e.g. `"punct"`). ~~Iterable[str]~~ |
|
|
| `missing_values` | Attribute values to treat as missing annotation in the reference annotation. Defaults to `{0, None, ""}`. ~~Set[Any]~~ |
|
|
| **RETURNS** | A dictionary containing the scores: `{attr}_uas`, `{attr}_las`, and `{attr}_las_per_type`. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
|
|
|
## Scorer.score_cats {id="score_cats",tag="staticmethod",version="3"}
|
|
|
|
Calculate PRF and ROC AUC scores for a doc-level attribute that is a dict
|
|
containing scores for each label like `Doc.cats`. The returned dictionary
|
|
contains the following scores:
|
|
|
|
- `{attr}_micro_p`, `{attr}_micro_r` and `{attr}_micro_f`: each instance across
|
|
each label is weighted equally
|
|
- `{attr}_macro_p`, `{attr}_macro_r` and `{attr}_macro_f`: the average values
|
|
across evaluations per label
|
|
- `{attr}_f_per_type` and `{attr}_auc_per_type`: each contains a dictionary of
|
|
scores, keyed by label
|
|
- A final `{attr}_score` and corresponding `{attr}_score_desc` (text
|
|
description)
|
|
|
|
The reported `{attr}_score` depends on the classification properties:
|
|
|
|
- **binary exclusive with positive label:** `{attr}_score` is set to the F-score
|
|
of the positive label
|
|
- **3+ exclusive classes**, macro-averaged F-score:
|
|
`{attr}_score = {attr}_macro_f`
|
|
- **multilabel**, macro-averaged AUC: `{attr}_score = {attr}_macro_auc`
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> labels = ["LABEL_A", "LABEL_B", "LABEL_C"]
|
|
> scores = Scorer.score_cats(
|
|
> examples,
|
|
> "cats",
|
|
> labels=labels
|
|
> )
|
|
> print(scores["cats_macro_auc"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| `attr` | The attribute to score. ~~str~~ |
|
|
| _keyword-only_ | |
|
|
| `getter` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. ~~Callable[[Doc, str], Dict[str, float]]~~ |
|
|
| labels | The set of possible labels. Defaults to `[]`. ~~Iterable[str]~~ |
|
|
| `multi_label` | Whether the attribute allows multiple labels. Defaults to `True`. When set to `False` (exclusive labels), missing gold labels are interpreted as `0.0` and the threshold is set to `0.0`. ~~bool~~ |
|
|
| `positive_label` | The positive label for a binary task with exclusive classes. Defaults to `None`. ~~Optional[str]~~ |
|
|
| `threshold` | Cutoff to consider a prediction "positive". Defaults to `0.5` for multi-label, and `0.0` (i.e. whatever's highest scoring) otherwise. ~~float~~ |
|
|
| **RETURNS** | A dictionary containing the scores, with inapplicable scores as `None`. ~~Dict[str, Optional[float]]~~ |
|
|
|
|
## Scorer.score_links {id="score_links",tag="staticmethod",version="3"}
|
|
|
|
Returns PRF for predicted links on the entity level. To disentangle the
|
|
performance of the NEL from the NER, this method only evaluates NEL links for
|
|
entities that overlap between the gold reference and the predictions.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = Scorer.score_links(
|
|
> examples,
|
|
> negative_labels=["NIL", ""]
|
|
> )
|
|
> print(scores["nel_micro_f"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `negative_labels` | The string values that refer to no annotation (e.g. "NIL"). ~~Iterable[str]~~ |
|
|
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
|
|
|
|
## get_ner_prf {id="get_ner_prf",version="3"}
|
|
|
|
Compute micro-PRF and per-entity PRF scores.
|
|
|
|
| Name | Description |
|
|
| ---------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
|
|
## score_coref_clusters {id="score_coref_clusters",tag="experimental"}
|
|
|
|
Returns LEA ([Moosavi and Strube, 2016](https://aclanthology.org/P16-1060/)) PRF
|
|
scores for coreference clusters.
|
|
|
|
<Infobox title="Important note" variant="warning">
|
|
|
|
Note this scoring function is not yet included in spaCy core - for details, see
|
|
the [CoreferenceResolver](/api/coref) docs.
|
|
|
|
</Infobox>
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = score_coref_clusters(
|
|
> examples,
|
|
> span_cluster_prefix="coref_clusters",
|
|
> )
|
|
> print(scores["coref_f"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `span_cluster_prefix` | The prefix used for spans representing coreference clusters. ~~str~~ |
|
|
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
|
|
|
|
## score_span_predictions {id="score_span_predictions",tag="experimental"}
|
|
|
|
Return accuracy for reconstructions of spans from single tokens. Only exactly
|
|
correct predictions are counted as correct, there is no partial credit for near
|
|
answers. Used by the [SpanResolver](/api/span-resolver).
|
|
|
|
<Infobox title="Important note" variant="warning">
|
|
|
|
Note this scoring function is not yet included in spaCy core - for details, see
|
|
the [SpanResolver](/api/span-resolver) docs.
|
|
|
|
</Infobox>
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> scores = score_span_predictions(
|
|
> examples,
|
|
> output_prefix="coref_clusters",
|
|
> )
|
|
> print(scores["span_coref_clusters_accuracy"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| --------------- | ------------------------------------------------------------------------------------------------------------------- |
|
|
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
|
| _keyword-only_ | |
|
|
| `output_prefix` | The prefix used for spans representing the final predicted spans. ~~str~~ |
|
|
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
|