mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 15:54:13 +03:00
d1d7fd5f5d
It should be possible to validate top-level config with file paths that don't exist
331 lines
13 KiB
Python
331 lines
13 KiB
Python
from typing import Dict, List, Union, Optional, Sequence, Any
|
|
from enum import Enum
|
|
from pydantic import BaseModel, Field, ValidationError, validator
|
|
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
|
|
from pydantic import root_validator
|
|
from collections import defaultdict
|
|
from thinc.api import Model, Optimizer
|
|
|
|
from .attrs import NAMES
|
|
|
|
|
|
def validate(schema, obj):
|
|
"""Validate data against a given pydantic schema.
|
|
|
|
obj (dict): JSON-serializable data to validate.
|
|
schema (pydantic.BaseModel): The schema to validate against.
|
|
RETURNS (list): A list of error messages, if available.
|
|
"""
|
|
try:
|
|
schema(**obj)
|
|
return []
|
|
except ValidationError as e:
|
|
errors = e.errors()
|
|
data = defaultdict(list)
|
|
for error in errors:
|
|
err_loc = " -> ".join([str(p) for p in error.get("loc", [])])
|
|
data[err_loc].append(error.get("msg"))
|
|
return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()]
|
|
|
|
|
|
# Matcher token patterns
|
|
|
|
|
|
def validate_token_pattern(obj):
|
|
# Try to convert non-string keys (e.g. {ORTH: "foo"} -> {"ORTH": "foo"})
|
|
get_key = lambda k: NAMES[k] if isinstance(k, int) and k < len(NAMES) else k
|
|
if isinstance(obj, list):
|
|
converted = []
|
|
for pattern in obj:
|
|
if isinstance(pattern, dict):
|
|
pattern = {get_key(k): v for k, v in pattern.items()}
|
|
converted.append(pattern)
|
|
obj = converted
|
|
return validate(TokenPatternSchema, {"pattern": obj})
|
|
|
|
|
|
class TokenPatternString(BaseModel):
|
|
REGEX: Optional[StrictStr]
|
|
IN: Optional[List[StrictStr]]
|
|
NOT_IN: Optional[List[StrictStr]]
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@validator("*", pre=True, whole=True)
|
|
def raise_for_none(cls, v):
|
|
if v is None:
|
|
raise ValueError("None / null is not allowed")
|
|
return v
|
|
|
|
|
|
class TokenPatternNumber(BaseModel):
|
|
REGEX: Optional[StrictStr] = None
|
|
IN: Optional[List[StrictInt]] = None
|
|
NOT_IN: Optional[List[StrictInt]] = None
|
|
EQ: Union[StrictInt, StrictFloat] = Field(None, alias="==")
|
|
NEQ: Union[StrictInt, StrictFloat] = Field(None, alias="!=")
|
|
GEQ: Union[StrictInt, StrictFloat] = Field(None, alias=">=")
|
|
LEQ: Union[StrictInt, StrictFloat] = Field(None, alias="<=")
|
|
GT: Union[StrictInt, StrictFloat] = Field(None, alias=">")
|
|
LT: Union[StrictInt, StrictFloat] = Field(None, alias="<")
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@validator("*", pre=True, whole=True)
|
|
def raise_for_none(cls, v):
|
|
if v is None:
|
|
raise ValueError("None / null is not allowed")
|
|
return v
|
|
|
|
|
|
class TokenPatternOperator(str, Enum):
|
|
plus: StrictStr = "+"
|
|
start: StrictStr = "*"
|
|
question: StrictStr = "?"
|
|
exclamation: StrictStr = "!"
|
|
|
|
|
|
StringValue = Union[TokenPatternString, StrictStr]
|
|
NumberValue = Union[TokenPatternNumber, StrictInt, StrictFloat]
|
|
UnderscoreValue = Union[
|
|
TokenPatternString, TokenPatternNumber, str, int, float, list, bool,
|
|
]
|
|
|
|
|
|
class TokenPattern(BaseModel):
|
|
orth: Optional[StringValue] = None
|
|
text: Optional[StringValue] = None
|
|
lower: Optional[StringValue] = None
|
|
pos: Optional[StringValue] = None
|
|
tag: Optional[StringValue] = None
|
|
dep: Optional[StringValue] = None
|
|
lemma: Optional[StringValue] = None
|
|
shape: Optional[StringValue] = None
|
|
ent_type: Optional[StringValue] = None
|
|
norm: Optional[StringValue] = None
|
|
length: Optional[NumberValue] = None
|
|
spacy: Optional[StrictBool] = None
|
|
is_alpha: Optional[StrictBool] = None
|
|
is_ascii: Optional[StrictBool] = None
|
|
is_digit: Optional[StrictBool] = None
|
|
is_lower: Optional[StrictBool] = None
|
|
is_upper: Optional[StrictBool] = None
|
|
is_title: Optional[StrictBool] = None
|
|
is_punct: Optional[StrictBool] = None
|
|
is_space: Optional[StrictBool] = None
|
|
is_bracket: Optional[StrictBool] = None
|
|
is_quote: Optional[StrictBool] = None
|
|
is_left_punct: Optional[StrictBool] = None
|
|
is_right_punct: Optional[StrictBool] = None
|
|
is_currency: Optional[StrictBool] = None
|
|
is_stop: Optional[StrictBool] = None
|
|
is_sent_start: Optional[StrictBool] = None
|
|
sent_start: Optional[StrictBool] = None
|
|
like_num: Optional[StrictBool] = None
|
|
like_url: Optional[StrictBool] = None
|
|
like_email: Optional[StrictBool] = None
|
|
op: Optional[TokenPatternOperator] = None
|
|
underscore: Optional[Dict[StrictStr, UnderscoreValue]] = Field(None, alias="_")
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
allow_population_by_field_name = True
|
|
alias_generator = lambda value: value.upper()
|
|
|
|
@validator("*", pre=True)
|
|
def raise_for_none(cls, v):
|
|
if v is None:
|
|
raise ValueError("None / null is not allowed")
|
|
return v
|
|
|
|
|
|
class TokenPatternSchema(BaseModel):
|
|
pattern: List[TokenPattern] = Field(..., minItems=1)
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
|
|
# Model meta
|
|
|
|
|
|
class ModelMetaSchema(BaseModel):
|
|
# fmt: off
|
|
lang: StrictStr = Field(..., title="Two-letter language code, e.g. 'en'")
|
|
name: StrictStr = Field(..., title="Model name")
|
|
version: StrictStr = Field(..., title="Model version")
|
|
spacy_version: Optional[StrictStr] = Field(None, title="Compatible spaCy version identifier")
|
|
parent_package: Optional[StrictStr] = Field("spacy", title="Name of parent spaCy package, e.g. spacy or spacy-nightly")
|
|
pipeline: Optional[List[StrictStr]] = Field([], title="Names of pipeline components")
|
|
description: Optional[StrictStr] = Field(None, title="Model description")
|
|
license: Optional[StrictStr] = Field(None, title="Model license")
|
|
author: Optional[StrictStr] = Field(None, title="Model author name")
|
|
email: Optional[StrictStr] = Field(None, title="Model author email")
|
|
url: Optional[StrictStr] = Field(None, title="Model author URL")
|
|
sources: Optional[Union[List[StrictStr], Dict[str, str]]] = Field(None, title="Training data sources")
|
|
vectors: Optional[Dict[str, Any]] = Field(None, title="Included word vectors")
|
|
accuracy: Optional[Dict[str, Union[float, int]]] = Field(None, title="Accuracy numbers")
|
|
speed: Optional[Dict[str, Union[float, int]]] = Field(None, title="Speed evaluation numbers")
|
|
# fmt: on
|
|
|
|
|
|
# JSON training format
|
|
|
|
|
|
class TrainingSchema(BaseModel):
|
|
# TODO: write
|
|
|
|
class Config:
|
|
title = "Schema for training data in spaCy's JSON format"
|
|
extra = "forbid"
|
|
|
|
|
|
# Config schema
|
|
# We're not setting any defaults here (which is too messy) and are making all
|
|
# fields required, so we can raise validation errors for missing values. To
|
|
# provide a default, we include a separate .cfg file with all values and
|
|
# check that against this schema in the test suite to make sure it's always
|
|
# up to date.
|
|
|
|
|
|
class ConfigSchemaTraining(BaseModel):
|
|
# fmt: off
|
|
gold_preproc: StrictBool = Field(..., title="Whether to train on gold-standard sentences and tokens")
|
|
max_length: StrictInt = Field(..., title="Maximum length of examples (longer examples are divided into sentences if possible)")
|
|
limit: StrictInt = Field(..., title="Number of examples to use (0 for all)")
|
|
orth_variant_level: StrictFloat = Field(..., title="Orth variants for data augmentation")
|
|
dropout: StrictFloat = Field(..., title="Dropout rate")
|
|
patience: StrictInt = Field(..., title="How many steps to continue without improvement in evaluation score")
|
|
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
|
|
max_steps: StrictInt = Field(..., title="Maximum number of update steps to train for")
|
|
eval_frequency: StrictInt = Field(..., title="How often to evaluate during training (steps)")
|
|
seed: Optional[StrictInt] = Field(..., title="Random seed")
|
|
accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps")
|
|
use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch")
|
|
use_gpu: StrictInt = Field(..., title="GPU ID or -1 for CPU")
|
|
scores: List[StrictStr] = Field(..., title="Score types to be printed in overview")
|
|
score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Weights of each score type for selecting final model")
|
|
init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights")
|
|
discard_oversize: StrictBool = Field(..., title="Whether to skip examples longer than batch size")
|
|
omit_extra_lookups: StrictBool = Field(..., title="Don't include extra lookups in model")
|
|
batch_by: StrictStr = Field(..., title="Batch examples by type")
|
|
raw_text: Optional[StrictStr] = Field(..., title="Raw text")
|
|
tag_map: Optional[StrictStr] = Field(..., title="Path to JSON-formatted tag map")
|
|
batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule")
|
|
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class ConfigSchemaNlpComponent(BaseModel):
|
|
factory: StrictStr = Field(..., title="Component factory name")
|
|
model: Model = Field(..., title="Component model")
|
|
# TODO: add config schema / types for components so we can fill and validate
|
|
# component options like learn_tokens, min_action_freq etc.
|
|
|
|
class Config:
|
|
extra = "allow"
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class ConfigSchemaPipeline(BaseModel):
|
|
__root__: Dict[str, ConfigSchemaNlpComponent]
|
|
|
|
class Config:
|
|
extra = "allow"
|
|
|
|
|
|
class ConfigSchemaNlp(BaseModel):
|
|
lang: StrictStr = Field(..., title="The base language to use")
|
|
base_model: Optional[StrictStr] = Field(..., title="The base model to use")
|
|
vectors: Optional[StrictStr] = Field(..., title="Path to vectors")
|
|
pipeline: Optional[ConfigSchemaPipeline]
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class ConfigSchemaPretrain(BaseModel):
|
|
# fmt: off
|
|
max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for")
|
|
min_length: StrictInt = Field(..., title="Minimum length of examples")
|
|
max_length: StrictInt = Field(..., title="Maximum length of examples")
|
|
dropout: StrictFloat = Field(..., title="Dropout rate")
|
|
n_save_every: Optional[StrictInt] = Field(..., title="Saving frequency")
|
|
batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule")
|
|
seed: Optional[StrictInt] = Field(..., title="Random seed")
|
|
use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch")
|
|
tok2vec_model: StrictStr = Field(..., title="tok2vec model in config, e.g. nlp.pipeline.tok2vec.model")
|
|
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
|
# TODO: use a more detailed schema for this?
|
|
objective: Dict[str, Any] = Field(..., title="Pretraining objective")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
class ConfigSchema(BaseModel):
|
|
training: ConfigSchemaTraining
|
|
nlp: ConfigSchemaNlp
|
|
pretraining: Optional[ConfigSchemaPretrain]
|
|
|
|
@root_validator
|
|
def validate_config(cls, values):
|
|
"""Perform additional validation for settings with dependencies."""
|
|
pt = values.get("pretraining")
|
|
if pt and pt.objective.get("type") == "vectors" and not values["nlp"].vectors:
|
|
err = "Need nlp.vectors if pretraining.objective.type is vectors"
|
|
raise ValueError(err)
|
|
return values
|
|
|
|
class Config:
|
|
extra = "allow"
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
# Project config Schema
|
|
|
|
|
|
class ProjectConfigAsset(BaseModel):
|
|
# fmt: off
|
|
dest: StrictStr = Field(..., title="Destination of downloaded asset")
|
|
url: Optional[StrictStr] = Field(None, title="URL of asset")
|
|
checksum: str = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
|
|
# fmt: on
|
|
|
|
|
|
class ProjectConfigCommand(BaseModel):
|
|
# fmt: off
|
|
name: StrictStr = Field(..., title="Name of command")
|
|
help: Optional[StrictStr] = Field(None, title="Command description")
|
|
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
|
|
deps: List[StrictStr] = Field([], title="File dependencies required by this command")
|
|
outputs: List[StrictStr] = Field([], title="Outputs produced by this command")
|
|
outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)")
|
|
no_skip: bool = Field(False, title="Never skip this command, even if nothing changed")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
title = "A single named command specified in a project config"
|
|
extra = "forbid"
|
|
|
|
|
|
class ProjectConfigSchema(BaseModel):
|
|
# fmt: off
|
|
variables: Dict[StrictStr, Union[str, int, float, bool]] = Field({}, title="Optional variables to substitute in commands")
|
|
assets: List[ProjectConfigAsset] = Field([], title="Data assets")
|
|
workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order")
|
|
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
title = "Schema for project configuration file"
|