mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-16 14:47:16 +03:00
a5cd203284
* Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
63 lines
1.8 KiB
Python
63 lines
1.8 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["ca.", "m.a.o.", "Jan.", "Dec.", "kr.", "jf."])
|
|
def test_da_tokenizer_handles_abbr(da_tokenizer, text):
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["Jul.", "jul.", "Tor.", "Tors."])
|
|
def test_da_tokenizer_handles_ambiguous_abbr(da_tokenizer, text):
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["1.", "10.", "31."])
|
|
def test_da_tokenizer_handles_dates(da_tokenizer, text):
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
def test_da_tokenizer_handles_exc_in_text(da_tokenizer):
|
|
text = "Det er bl.a. ikke meningen"
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == 5
|
|
assert tokens[2].text == "bl.a."
|
|
|
|
|
|
def test_da_tokenizer_handles_custom_base_exc(da_tokenizer):
|
|
text = "Her er noget du kan kigge i."
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == 8
|
|
assert tokens[6].text == "i"
|
|
assert tokens[7].text == "."
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,n_tokens",
|
|
[
|
|
("Godt og/eller skidt", 3),
|
|
("Kør 4 km/t på vejen", 5),
|
|
("Det blæser 12 m/s.", 5),
|
|
("Det blæser 12 m/sek. på havnen", 6),
|
|
("Windows 8/Windows 10", 5),
|
|
("Billeten virker til bus/tog/metro", 8),
|
|
("26/02/2019", 1),
|
|
("Kristiansen c/o Madsen", 3),
|
|
("Sprogteknologi a/s", 2),
|
|
("De boede i A/B Bellevue", 5),
|
|
# note: skipping due to weirdness in UD_Danish-DDT
|
|
# ("Rotorhastigheden er 3400 o/m.", 5),
|
|
("Jeg købte billet t/r.", 5),
|
|
("Murerarbejdsmand m/k søges", 3),
|
|
("Netværket kører over TCP/IP", 4),
|
|
],
|
|
)
|
|
def test_da_tokenizer_slash(da_tokenizer, text, n_tokens):
|
|
tokens = da_tokenizer(text)
|
|
assert len(tokens) == n_tokens
|