mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| from thinc.neural.optimizers import Adam
 | |
| from thinc.neural.ops import NumpyOps
 | |
| from spacy.attrs import NORM
 | |
| from spacy.gold import GoldParse
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.tokens import Doc
 | |
| from spacy.pipeline import DependencyParser, EntityRecognizer
 | |
| from spacy.util import fix_random_seed
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab(lex_attr_getters={NORM: lambda s: s})
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab):
 | |
|     parser = DependencyParser(vocab)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_init_parser(parser):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def _train_parser(parser):
 | |
|     fix_random_seed(1)
 | |
|     parser.add_label("left")
 | |
|     parser.begin_training([], **parser.cfg)
 | |
|     sgd = Adam(NumpyOps(), 0.001)
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|         gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
 | |
|         parser.update([doc], [gold], sgd=sgd, losses=losses)
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_add_label(parser):
 | |
|     parser = _train_parser(parser)
 | |
|     parser.add_label("right")
 | |
|     sgd = Adam(NumpyOps(), 0.001)
 | |
|     for i in range(10):
 | |
|         losses = {}
 | |
|         doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|         gold = GoldParse(
 | |
|             doc, heads=[1, 1, 3, 3], deps=["right", "ROOT", "left", "ROOT"]
 | |
|         )
 | |
|         parser.update([doc], [gold], sgd=sgd, losses=losses)
 | |
|     doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
 | |
|     doc = parser(doc)
 | |
|     assert doc[0].dep_ == "right"
 | |
|     assert doc[2].dep_ == "left"
 | |
| 
 | |
| 
 | |
| def test_add_label_deserializes_correctly():
 | |
|     ner1 = EntityRecognizer(Vocab())
 | |
|     ner1.add_label("C")
 | |
|     ner1.add_label("B")
 | |
|     ner1.add_label("A")
 | |
|     ner1.begin_training([])
 | |
|     ner2 = EntityRecognizer(Vocab()).from_bytes(ner1.to_bytes())
 | |
|     assert ner1.moves.n_moves == ner2.moves.n_moves
 | |
|     for i in range(ner1.moves.n_moves):
 | |
|         assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "pipe_cls,n_moves", [(DependencyParser, 5), (EntityRecognizer, 4)]
 | |
| )
 | |
| def test_add_label_get_label(pipe_cls, n_moves):
 | |
|     """Test that added labels are returned correctly. This test was added to
 | |
|     test for a bug in DependencyParser.labels that'd cause it to fail when
 | |
|     splitting the move names.
 | |
|     """
 | |
|     labels = ["A", "B", "C"]
 | |
|     pipe = pipe_cls(Vocab())
 | |
|     for label in labels:
 | |
|         pipe.add_label(label)
 | |
|     assert len(pipe.move_names) == len(labels) * n_moves
 | |
|     pipe_labels = sorted(list(pipe.labels))
 | |
|     assert pipe_labels == labels
 |