mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			293 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| from spacy.lang.en import English
 | |
| 
 | |
| from spacy.pipeline import EntityRecognizer, EntityRuler
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.syntax.ner import BiluoPushDown
 | |
| from spacy.gold import GoldParse
 | |
| from spacy.tokens import Doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(vocab):
 | |
|     return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def entity_annots(doc):
 | |
|     casey = doc[0:1]
 | |
|     ny = doc[3:5]
 | |
|     return [
 | |
|         (casey.start_char, casey.end_char, "PERSON"),
 | |
|         (ny.start_char, ny.end_char, "GPE"),
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def entity_types(entity_annots):
 | |
|     return sorted(set([label for (s, e, label) in entity_annots]))
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tsys(vocab, entity_types):
 | |
|     actions = BiluoPushDown.get_actions(entity_types=entity_types)
 | |
|     return BiluoPushDown(vocab.strings, actions)
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves(tsys, doc, entity_annots):
 | |
|     gold = GoldParse(doc, entities=entity_annots)
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
|     assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
 | |
|     entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
 | |
|     gold = GoldParse(doc, entities=entity_annots)
 | |
|     for i, tag in enumerate(gold.ner):
 | |
|         if tag == "L-!GPE":
 | |
|             gold.ner[i] = "-"
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
|     assert names
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves_negative_entities2(tsys, vocab):
 | |
|     doc = Doc(vocab, words=["A", "B", "C", "D"])
 | |
|     gold = GoldParse(doc, entities=[])
 | |
|     gold.ner = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"]
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
|     assert names
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves_negative_O(tsys, vocab):
 | |
|     doc = Doc(vocab, words=["A", "B", "C", "D"])
 | |
|     gold = GoldParse(doc, entities=[])
 | |
|     gold.ner = ["O", "!O", "O", "!O"]
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
|     assert names
 | |
| 
 | |
| 
 | |
| def test_oracle_moves_missing_B(en_vocab):
 | |
|     words = ["B", "52", "Bomber"]
 | |
|     biluo_tags = [None, None, "L-PRODUCT"]
 | |
| 
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     gold = GoldParse(doc, words=words, entities=biluo_tags)
 | |
| 
 | |
|     moves = BiluoPushDown(en_vocab.strings)
 | |
|     move_types = ("M", "B", "I", "L", "U", "O")
 | |
|     for tag in biluo_tags:
 | |
|         if tag is None:
 | |
|             continue
 | |
|         elif tag == "O":
 | |
|             moves.add_action(move_types.index("O"), "")
 | |
|         else:
 | |
|             action, label = tag.split("-")
 | |
|             moves.add_action(move_types.index("B"), label)
 | |
|             moves.add_action(move_types.index("I"), label)
 | |
|             moves.add_action(move_types.index("L"), label)
 | |
|             moves.add_action(move_types.index("U"), label)
 | |
|     moves.preprocess_gold(gold)
 | |
|     moves.get_oracle_sequence(doc, gold)
 | |
| 
 | |
| 
 | |
| def test_oracle_moves_whitespace(en_vocab):
 | |
|     words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
 | |
|     biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]
 | |
| 
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     gold = GoldParse(doc, words=words, entities=biluo_tags)
 | |
| 
 | |
|     moves = BiluoPushDown(en_vocab.strings)
 | |
|     move_types = ("M", "B", "I", "L", "U", "O")
 | |
|     for tag in biluo_tags:
 | |
|         if tag is None:
 | |
|             continue
 | |
|         elif tag == "O":
 | |
|             moves.add_action(move_types.index("O"), "")
 | |
|         else:
 | |
|             action, label = tag.split("-")
 | |
|             moves.add_action(move_types.index(action), label)
 | |
|     moves.preprocess_gold(gold)
 | |
|     moves.get_oracle_sequence(doc, gold)
 | |
| 
 | |
| 
 | |
| def test_accept_blocked_token():
 | |
|     """Test succesful blocking of tokens to be in an entity."""
 | |
|     # 1. test normal behaviour
 | |
|     nlp1 = English()
 | |
|     doc1 = nlp1("I live in New York")
 | |
|     ner1 = EntityRecognizer(doc1.vocab)
 | |
|     assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
 | |
|     assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
 | |
| 
 | |
|     # Add the OUT action
 | |
|     ner1.moves.add_action(5, "")
 | |
|     ner1.add_label("GPE")
 | |
|     # Get into the state just before "New"
 | |
|     state1 = ner1.moves.init_batch([doc1])[0]
 | |
|     ner1.moves.apply_transition(state1, "O")
 | |
|     ner1.moves.apply_transition(state1, "O")
 | |
|     ner1.moves.apply_transition(state1, "O")
 | |
|     # Check that B-GPE is valid.
 | |
|     assert ner1.moves.is_valid(state1, "B-GPE")
 | |
| 
 | |
|     # 2. test blocking behaviour
 | |
|     nlp2 = English()
 | |
|     doc2 = nlp2("I live in New York")
 | |
|     ner2 = EntityRecognizer(doc2.vocab)
 | |
| 
 | |
|     # set "New York" to a blocked entity
 | |
|     doc2.ents = [(0, 3, 5)]
 | |
|     assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"]
 | |
|     assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""]
 | |
| 
 | |
|     # Check that B-GPE is now invalid.
 | |
|     ner2.moves.add_action(4, "")
 | |
|     ner2.moves.add_action(5, "")
 | |
|     ner2.add_label("GPE")
 | |
|     state2 = ner2.moves.init_batch([doc2])[0]
 | |
|     ner2.moves.apply_transition(state2, "O")
 | |
|     ner2.moves.apply_transition(state2, "O")
 | |
|     ner2.moves.apply_transition(state2, "O")
 | |
|     # we can only use U- for "New"
 | |
|     assert not ner2.moves.is_valid(state2, "B-GPE")
 | |
|     assert ner2.moves.is_valid(state2, "U-")
 | |
|     ner2.moves.apply_transition(state2, "U-")
 | |
|     # we can only use U- for "York"
 | |
|     assert not ner2.moves.is_valid(state2, "B-GPE")
 | |
|     assert ner2.moves.is_valid(state2, "U-")
 | |
| 
 | |
| 
 | |
| def test_overwrite_token():
 | |
|     nlp = English()
 | |
|     ner1 = nlp.create_pipe("ner")
 | |
|     nlp.add_pipe(ner1, name="ner")
 | |
|     nlp.begin_training()
 | |
| 
 | |
|     # The untrained NER will predict O for each token
 | |
|     doc = nlp("I live in New York")
 | |
|     assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
 | |
|     assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
 | |
| 
 | |
|     # Check that a new ner can overwrite O
 | |
|     ner2 = EntityRecognizer(doc.vocab)
 | |
|     ner2.moves.add_action(5, "")
 | |
|     ner2.add_label("GPE")
 | |
|     state = ner2.moves.init_batch([doc])[0]
 | |
|     assert ner2.moves.is_valid(state, "B-GPE")
 | |
|     assert ner2.moves.is_valid(state, "U-GPE")
 | |
|     ner2.moves.apply_transition(state, "B-GPE")
 | |
|     assert ner2.moves.is_valid(state, "I-GPE")
 | |
|     assert ner2.moves.is_valid(state, "L-GPE")
 | |
| 
 | |
| 
 | |
| def test_ruler_before_ner():
 | |
|     """ Test that an NER works after an entity_ruler: the second can add annotations """
 | |
|     nlp = English()
 | |
| 
 | |
|     # 1 : Entity Ruler - should set "this" to B and everything else to empty
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [{"label": "THING", "pattern": "This"}]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     # 2: untrained NER - should set everything else to O
 | |
|     untrained_ner = nlp.create_pipe("ner")
 | |
|     untrained_ner.add_label("MY_LABEL")
 | |
|     nlp.add_pipe(untrained_ner)
 | |
|     nlp.begin_training()
 | |
| 
 | |
|     doc = nlp("This is Antti Korhonen speaking in Finland")
 | |
|     expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
 | |
|     expected_types = ["THING", "", "", "", "", "", ""]
 | |
|     assert [token.ent_iob_ for token in doc] == expected_iobs
 | |
|     assert [token.ent_type_ for token in doc] == expected_types
 | |
| 
 | |
| 
 | |
| def test_ner_before_ruler():
 | |
|     """ Test that an entity_ruler works after an NER: the second can overwrite O annotations """
 | |
|     nlp = English()
 | |
| 
 | |
|     # 1: untrained NER - should set everything to O
 | |
|     untrained_ner = nlp.create_pipe("ner")
 | |
|     untrained_ner.add_label("MY_LABEL")
 | |
|     nlp.add_pipe(untrained_ner, name="uner")
 | |
|     nlp.begin_training()
 | |
| 
 | |
|     # 2 : Entity Ruler - should set "this" to B and keep everything else O
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [{"label": "THING", "pattern": "This"}]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     doc = nlp("This is Antti Korhonen speaking in Finland")
 | |
|     expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
 | |
|     expected_types = ["THING", "", "", "", "", "", ""]
 | |
|     assert [token.ent_iob_ for token in doc] == expected_iobs
 | |
|     assert [token.ent_type_ for token in doc] == expected_types
 | |
| 
 | |
| 
 | |
| def test_block_ner():
 | |
|     """ Test functionality for blocking tokens so they can't be in a named entity """
 | |
|     # block "Antti L Korhonen" from being a named entity
 | |
|     nlp = English()
 | |
|     nlp.add_pipe(BlockerComponent1(2, 5))
 | |
|     untrained_ner = nlp.create_pipe("ner")
 | |
|     untrained_ner.add_label("MY_LABEL")
 | |
|     nlp.add_pipe(untrained_ner, name="uner")
 | |
|     nlp.begin_training()
 | |
|     doc = nlp("This is Antti L Korhonen speaking in Finland")
 | |
|     expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
 | |
|     expected_types = ["", "", "", "", "", "", "", ""]
 | |
|     assert [token.ent_iob_ for token in doc] == expected_iobs
 | |
|     assert [token.ent_type_ for token in doc] == expected_types
 | |
| 
 | |
| 
 | |
| def test_change_number_features():
 | |
|     # Test the default number features
 | |
|     nlp = English()
 | |
|     ner = nlp.create_pipe("ner")
 | |
|     nlp.add_pipe(ner)
 | |
|     ner.add_label("PERSON")
 | |
|     nlp.begin_training()
 | |
|     assert ner.model.lower.nF == ner.nr_feature
 | |
|     # Test we can change it
 | |
|     nlp = English()
 | |
|     ner = nlp.create_pipe("ner")
 | |
|     nlp.add_pipe(ner)
 | |
|     ner.add_label("PERSON")
 | |
|     nlp.begin_training(
 | |
|         component_cfg={"ner": {"nr_feature_tokens": 3, "token_vector_width": 128}}
 | |
|     )
 | |
|     assert ner.model.lower.nF == 3
 | |
|     # Test the model runs
 | |
|     nlp("hello world")
 | |
| 
 | |
| 
 | |
| class BlockerComponent1(object):
 | |
|     name = "my_blocker"
 | |
| 
 | |
|     def __init__(self, start, end):
 | |
|         self.start = start
 | |
|         self.end = end
 | |
| 
 | |
|     def __call__(self, doc):
 | |
|         doc.ents = [(0, self.start, self.end)]
 | |
|         return doc
 |