mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			104 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| import numpy
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import DependencyParser
 | |
| from spacy.syntax.arc_eager import ArcEager
 | |
| from spacy.tokens import Doc
 | |
| from spacy.syntax._beam_utils import ParserBeam
 | |
| from spacy.syntax.stateclass import StateClass
 | |
| from spacy.gold import GoldParse
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def moves(vocab):
 | |
|     aeager = ArcEager(vocab.strings, {})
 | |
|     aeager.add_action(2, "nsubj")
 | |
|     aeager.add_action(3, "dobj")
 | |
|     aeager.add_action(2, "aux")
 | |
|     return aeager
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def docs(vocab):
 | |
|     return [Doc(vocab, words=["Rats", "bite", "things"])]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def states(docs):
 | |
|     return [StateClass(doc) for doc in docs]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tokvecs(docs, vector_size):
 | |
|     output = []
 | |
|     for doc in docs:
 | |
|         vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
 | |
|         output.append(numpy.asarray(vec))
 | |
|     return output
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def golds(docs):
 | |
|     return [GoldParse(doc) for doc in docs]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def batch_size(docs):
 | |
|     return len(docs)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def beam_width():
 | |
|     return 4
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vector_size():
 | |
|     return 6
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def beam(moves, states, golds, beam_width):
 | |
|     return ParserBeam(moves, states, golds, width=beam_width, density=0.0)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def scores(moves, batch_size, beam_width):
 | |
|     return [
 | |
|         numpy.asarray(
 | |
|             numpy.random.uniform(-0.1, 0.1, (batch_size, moves.n_moves)), dtype="f"
 | |
|         )
 | |
|         for _ in range(batch_size)
 | |
|     ]
 | |
| 
 | |
| 
 | |
| def test_create_beam(beam):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def test_beam_advance(beam, scores):
 | |
|     beam.advance(scores)
 | |
| 
 | |
| 
 | |
| def test_beam_advance_too_few_scores(beam, scores):
 | |
|     with pytest.raises(IndexError):
 | |
|         beam.advance(scores[:-1])
 | |
| 
 | |
| 
 | |
| def test_beam_parse():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(DependencyParser(nlp.vocab), name="parser")
 | |
|     nlp.parser.add_label("nsubj")
 | |
|     nlp.parser.begin_training([], token_vector_width=8, hidden_width=8)
 | |
|     doc = nlp.make_doc("Australia is a country")
 | |
|     nlp.parser(doc, beam_width=2)
 |