mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
164 lines
5.5 KiB
Python
164 lines
5.5 KiB
Python
import numpy
|
|
from collections import defaultdict
|
|
|
|
import spacy
|
|
|
|
|
|
class SentimentAnalyser(object):
|
|
@classmethod
|
|
def load(cls, path, nlp):
|
|
pass
|
|
|
|
def __init__(self, model):
|
|
self._model = model
|
|
|
|
def __call__(self, doc):
|
|
X = get_features([doc], self.max_length)
|
|
y = self._model.predict(X)
|
|
self.set_sentiment(doc, y)
|
|
|
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
|
for minibatch in partition_all(batch_size, docs):
|
|
Xs = _get_features(minibatch)
|
|
ys = self._model.predict(X)
|
|
for i, doc in enumerate(minibatch):
|
|
doc.user_data['sentiment'] = ys[i]
|
|
|
|
def set_sentiment(self, doc, y):
|
|
doc.user_data['sentiment'] = y
|
|
|
|
|
|
def get_features(docs, max_length):
|
|
Xs = numpy.zeros(len(docs), max_length, dtype='int32')
|
|
for i, doc in enumerate(minibatch):
|
|
for j, token in enumerate(doc[:max_length]):
|
|
Xs[i, j] = token.rank if token.has_vector else 0
|
|
return Xs
|
|
|
|
def compile_lstm(embeddings, shape, settings, optimizer):
|
|
model = Sequential()
|
|
model.add(
|
|
Embedding(
|
|
embeddings.shape[1],
|
|
embeddings.shape[0],
|
|
input_length=shape['max_length'],
|
|
trainable=False,
|
|
weights=[embeddings]
|
|
)
|
|
)
|
|
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
|
|
model.add(Dropout(settings['dropout']))
|
|
model.add(Dense(shape['nr_class'], activation='sigmoid'))
|
|
return model
|
|
|
|
|
|
def get_embeddings(vocab):
|
|
'''
|
|
Get a numpy vector of the word embeddings. The Lexeme.rank attribute will
|
|
be the index into the table. We're going to be "decadent" here and use
|
|
1m vectors, because we're not going to fine-tune them.
|
|
'''
|
|
max_rank = max(lex.rank for lex in nlp.vocab if lex.has_vector)
|
|
vectors = numpy.ndarray((max_rank+1, nlp.vocab.vectors_length), dtype='float32')
|
|
for lex in vocab:
|
|
if lex.has_vector:
|
|
vectors[lex.rank] = lex.vector
|
|
return vectors
|
|
|
|
|
|
def train(train_texts, train_labels, dev_texts, dev_labels,
|
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
|
|
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
|
|
model = _compile_model(
|
|
_get_embeddings(
|
|
nlp.vocab),
|
|
lstm_shape,
|
|
lstm_settings,
|
|
lstm_optimizer)
|
|
model.fit(
|
|
_get_features(
|
|
nlp.pipe(
|
|
train_texts)),
|
|
train_ys,
|
|
_get_features(
|
|
nlp.pipe(
|
|
dev_texts)),
|
|
dev_ys,
|
|
nb_epoch=nb_epoch,
|
|
batch_size=batch_size)
|
|
model.save(model_dir)
|
|
|
|
|
|
def demonstrate_runtime(model_dir, texts):
|
|
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
|
|
|
|
Here we return a dictionary mapping entities to the average sentiment of the
|
|
documents they occurred in.
|
|
'''
|
|
def create_pipeline(nlp):
|
|
'''
|
|
This could be a lambda, but named functions are easier to read in Python.
|
|
'''
|
|
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
|
|
|
|
nlp = spacy.load('en', create_pipeline=create_pipeline)
|
|
entity_sentiments = defaultdict(float)
|
|
entity_freqs = defaultdict(int)
|
|
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
|
sentiment = doc.user_data['sentiment']
|
|
for ent in doc.ents:
|
|
entity_sentiments[ent.text] += sentiment
|
|
entity_freqs[ent.text] += 1
|
|
# Compute estimate of P(sentiment | entity)
|
|
for entity, sentiment in entity_freqs.items():
|
|
entity_sentiments[entity] /= entity_freqs[entity]
|
|
return entity_sentiments
|
|
|
|
|
|
def read_data(data_dir, limit=0):
|
|
examples = []
|
|
for subdir, label in (('pos', 1), ('neg', 0)):
|
|
for filename in (data_dir / subdir).iterdir():
|
|
with filename.open() as file_:
|
|
text = filename.read()
|
|
examples.append((text, label))
|
|
random.shuffle(examples)
|
|
if limit >= 1:
|
|
examples = examples[:limit]
|
|
return zip(*examples) # Unzips into two lists
|
|
|
|
|
|
@plac.annotations(
|
|
language=("The language to train", "positional", None, str, ['en','de', 'zh']),
|
|
train_loc=("Location of training file or directory"),
|
|
dev_loc=("Location of development file or directory"),
|
|
model_dir=("Location of output model directory",),
|
|
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
|
|
nr_hidden=("Number of hidden units", "flag", "H", int),
|
|
max_length=("Maximum sentence length", "flag", "L", int),
|
|
dropout=("Dropout", "flag", "d", float),
|
|
nr_epoch=("Number of training epochs", "flag", "i", int),
|
|
batch_size=("Size of minibatches for training LSTM", "flag", "b", int),
|
|
nr_examples=("Limit to N examples", "flag", "n", int)
|
|
)
|
|
def main(model_dir, train_dir, dev_dir,
|
|
is_runtime=False,
|
|
nr_hidden=64, max_length=100, # Shape
|
|
dropout=0.5, # General NN config
|
|
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
|
|
if is_runtime:
|
|
dev_texts, dev_labels = read_dev(dev_dir)
|
|
demonstrate_runtime(model_dir, dev_texts)
|
|
else:
|
|
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
|
dev_texts, dev_labels = read_dev(dev_dir)
|
|
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
|
{'nr_hidden': nr_hidden, 'max_length': max_length},
|
|
{'dropout': 0.5},
|
|
{},
|
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|