mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
adc9745718
* Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable. |
||
---|---|---|
.. | ||
af | ||
ar | ||
bg | ||
bn | ||
ca | ||
cs | ||
da | ||
de | ||
el | ||
en | ||
es | ||
et | ||
fa | ||
fi | ||
fr | ||
ga | ||
he | ||
hi | ||
hr | ||
hu | ||
id | ||
is | ||
it | ||
ja | ||
kn | ||
ko | ||
lb | ||
lt | ||
lv | ||
mr | ||
nb | ||
nl | ||
pl | ||
pt | ||
ro | ||
ru | ||
si | ||
sk | ||
sl | ||
sq | ||
sr | ||
sv | ||
ta | ||
te | ||
th | ||
tl | ||
tr | ||
tt | ||
uk | ||
ur | ||
vi | ||
xx | ||
yo | ||
zh | ||
__init__.py | ||
char_classes.py | ||
lex_attrs.py | ||
norm_exceptions.py | ||
punctuation.py | ||
tag_map.py | ||
tokenizer_exceptions.py |