mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals, division, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
from pathlib import Path
 | 
						|
import srsly
 | 
						|
import cProfile
 | 
						|
import pstats
 | 
						|
import sys
 | 
						|
import itertools
 | 
						|
import thinc.extra.datasets
 | 
						|
from wasabi import Printer
 | 
						|
 | 
						|
from ..util import load_model
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model to load", "positional", None, str),
 | 
						|
    inputs=("Location of input file. '-' for stdin.", "positional", None, str),
 | 
						|
    n_texts=("Maximum number of texts to use if available", "option", "n", int),
 | 
						|
)
 | 
						|
def profile(model, inputs=None, n_texts=10000):
 | 
						|
    """
 | 
						|
    Profile a spaCy pipeline, to find out which functions take the most time.
 | 
						|
    Input should be formatted as one JSON object per line with a key "text".
 | 
						|
    It can either be provided as a JSONL file, or be read from sys.sytdin.
 | 
						|
    If no input file is specified, the IMDB dataset is loaded via Thinc.
 | 
						|
    """
 | 
						|
    msg = Printer()
 | 
						|
    if inputs is not None:
 | 
						|
        inputs = _read_inputs(inputs, msg)
 | 
						|
    if inputs is None:
 | 
						|
        n_inputs = 25000
 | 
						|
        with msg.loading("Loading IMDB dataset via Thinc..."):
 | 
						|
            imdb_train, _ = thinc.extra.datasets.imdb()
 | 
						|
            inputs, _ = zip(*imdb_train)
 | 
						|
        msg.info("Loaded IMDB dataset and using {} examples".format(n_inputs))
 | 
						|
        inputs = inputs[:n_inputs]
 | 
						|
    with msg.loading("Loading model '{}'...".format(model)):
 | 
						|
        nlp = load_model(model)
 | 
						|
    msg.good("Loaded model '{}'".format(model))
 | 
						|
    texts = list(itertools.islice(inputs, n_texts))
 | 
						|
    cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
 | 
						|
    s = pstats.Stats("Profile.prof")
 | 
						|
    msg.divider("Profile stats")
 | 
						|
    s.strip_dirs().sort_stats("time").print_stats()
 | 
						|
 | 
						|
 | 
						|
def parse_texts(nlp, texts):
 | 
						|
    # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | 
						|
    import tqdm
 | 
						|
 | 
						|
    for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
def _read_inputs(loc, msg):
 | 
						|
    if loc == "-":
 | 
						|
        msg.info("Reading input from sys.stdin")
 | 
						|
        file_ = sys.stdin
 | 
						|
        file_ = (line.encode("utf8") for line in file_)
 | 
						|
    else:
 | 
						|
        input_path = Path(loc)
 | 
						|
        if not input_path.exists() or not input_path.is_file():
 | 
						|
            msg.fail("Not a valid input data file", loc, exits=1)
 | 
						|
        msg.info("Using data from {}".format(input_path.parts[-1]))
 | 
						|
        file_ = input_path.open()
 | 
						|
    for line in file_:
 | 
						|
        data = srsly.json_loads(line)
 | 
						|
        text = data["text"]
 | 
						|
        yield text
 |