mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			345 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			345 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True, binding=True
 | 
						|
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple
 | 
						|
 | 
						|
import srsly
 | 
						|
from thinc.api import Model, Optimizer, set_dropout_rate
 | 
						|
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
 | 
						|
from .. import util
 | 
						|
from ..errors import Errors
 | 
						|
from ..language import Language
 | 
						|
from ..training import Example, validate_examples
 | 
						|
from ..vocab import Vocab
 | 
						|
from .pipe import Pipe, deserialize_config
 | 
						|
 | 
						|
 | 
						|
cdef class TrainablePipe(Pipe):
 | 
						|
    """This class is a base class and not instantiated directly. Trainable
 | 
						|
    pipeline components like the EntityRecognizer or TextCategorizer inherit
 | 
						|
    from it and it defines the interface that components should follow to
 | 
						|
    function as trainable components in a spaCy pipeline.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/pipe
 | 
						|
    """
 | 
						|
    def __init__(self, vocab: Vocab, model: Model, name: str, **cfg):
 | 
						|
        """Initialize a pipeline component.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name.
 | 
						|
        **cfg: Additional settings and config parameters.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
 | 
						|
    def __call__(self, Doc doc) -> Doc:
 | 
						|
        """Apply the pipe to one document. The document is modified in place,
 | 
						|
        and returned. This usually happens under the hood when the nlp object
 | 
						|
        is called on a text and all components are applied to the Doc.
 | 
						|
 | 
						|
        docs (Doc): The Doc to process.
 | 
						|
        RETURNS (Doc): The processed Doc.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#call
 | 
						|
        """
 | 
						|
        error_handler = self.get_error_handler()
 | 
						|
        try:
 | 
						|
            scores = self.predict([doc])
 | 
						|
            self.set_annotations([doc], scores)
 | 
						|
            return doc
 | 
						|
        except Exception as e:
 | 
						|
            error_handler(self.name, self, [doc], e)
 | 
						|
 | 
						|
    def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
 | 
						|
        """Apply the pipe to a stream of documents. This usually happens under
 | 
						|
        the hood when the nlp object is called on a text and all components are
 | 
						|
        applied to the Doc.
 | 
						|
 | 
						|
        stream (Iterable[Doc]): A stream of documents.
 | 
						|
        batch_size (int): The number of documents to buffer.
 | 
						|
        error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
 | 
						|
            deals with a failing batch of documents. The default function just reraises
 | 
						|
            the exception.
 | 
						|
        YIELDS (Doc): Processed documents in order.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#pipe
 | 
						|
        """
 | 
						|
        error_handler = self.get_error_handler()
 | 
						|
        for docs in util.minibatch(stream, size=batch_size):
 | 
						|
            try:
 | 
						|
                scores = self.predict(docs)
 | 
						|
                self.set_annotations(docs, scores)
 | 
						|
                yield from docs
 | 
						|
            except Exception as e:
 | 
						|
                error_handler(self.name, self, docs, e)
 | 
						|
 | 
						|
    def predict(self, docs: Iterable[Doc]):
 | 
						|
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
        Returns a single tensor for a batch of documents.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to predict.
 | 
						|
        RETURNS: Vector representations of the predictions.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#predict
 | 
						|
        """
 | 
						|
        raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="predict", name=self.name))
 | 
						|
 | 
						|
    def set_annotations(self, docs: Iterable[Doc], scores):
 | 
						|
        """Modify a batch of documents, using pre-computed scores.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to modify.
 | 
						|
        scores: The scores to assign.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#set_annotations
 | 
						|
        """
 | 
						|
        raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="set_annotations", name=self.name))
 | 
						|
 | 
						|
    def update(self,
 | 
						|
               examples: Iterable["Example"],
 | 
						|
               *,
 | 
						|
               drop: float = 0.0,
 | 
						|
               sgd: Optimizer = None,
 | 
						|
               losses: Optional[Dict[str, float]] = None) -> Dict[str, float]:
 | 
						|
        """Learn from a batch of documents and gold-standard information,
 | 
						|
        updating the pipe's model. Delegates to predict and get_loss.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#update
 | 
						|
        """
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        if not hasattr(self, "model") or self.model in (None, True, False):
 | 
						|
            return losses
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        validate_examples(examples, "TrainablePipe.update")
 | 
						|
        if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
 | 
						|
        loss, d_scores = self.get_loss(examples, scores)
 | 
						|
        bp_scores(d_scores)
 | 
						|
        if sgd not in (None, False):
 | 
						|
            self.finish_update(sgd)
 | 
						|
        losses[self.name] += loss
 | 
						|
        return losses
 | 
						|
 | 
						|
    def rehearse(self,
 | 
						|
                 examples: Iterable[Example],
 | 
						|
                 *,
 | 
						|
                 sgd: Optimizer = None,
 | 
						|
                 losses: Dict[str, float] = None,
 | 
						|
                 **config) -> Dict[str, float]:
 | 
						|
        """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | 
						|
        teach the current model to make predictions similar to an initial model,
 | 
						|
        to try to address the "catastrophic forgetting" problem. This feature is
 | 
						|
        experimental.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#rehearse
 | 
						|
        """
 | 
						|
        pass
 | 
						|
 | 
						|
    def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
 | 
						|
        """Find the loss and gradient of loss for the batch of documents and
 | 
						|
        their predicted scores.
 | 
						|
 | 
						|
        examples (Iterable[Examples]): The batch of examples.
 | 
						|
        scores: Scores representing the model's predictions.
 | 
						|
        RETURNS (Tuple[float, float]): The loss and the gradient.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#get_loss
 | 
						|
        """
 | 
						|
        raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="get_loss", name=self.name))
 | 
						|
 | 
						|
    def create_optimizer(self) -> Optimizer:
 | 
						|
        """Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
        RETURNS (thinc.api.Optimizer): The optimizer.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#create_optimizer
 | 
						|
        """
 | 
						|
        return util.create_default_optimizer()
 | 
						|
 | 
						|
    def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language = None):
 | 
						|
        """Initialize the pipe for training, using data examples if available.
 | 
						|
        This method needs to be implemented by each TrainablePipe component,
 | 
						|
        ensuring the internal model (if available) is initialized properly
 | 
						|
        using the provided sample of Example objects.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects.
 | 
						|
        nlp (Language): The current nlp object the component is part of.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#initialize
 | 
						|
        """
 | 
						|
        raise NotImplementedError(Errors.E931.format(parent="TrainablePipe", method="initialize", name=self.name))
 | 
						|
 | 
						|
    def add_label(self, label: str) -> int:
 | 
						|
        """Add an output label.
 | 
						|
        For TrainablePipe components, it is possible to
 | 
						|
        extend pretrained models with new labels, but care should be taken to
 | 
						|
        avoid the "catastrophic forgetting" problem.
 | 
						|
 | 
						|
        label (str): The label to add.
 | 
						|
        RETURNS (int): 0 if label is already present, otherwise 1.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#add_label
 | 
						|
        """
 | 
						|
        raise NotImplementedError(Errors.E931.format(parent="Pipe", method="add_label", name=self.name))
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_trainable(self) -> bool:
 | 
						|
        return True
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_resizable(self) -> bool:
 | 
						|
        return getattr(self, "model", None) and "resize_output" in self.model.attrs
 | 
						|
 | 
						|
    def _allow_extra_label(self) -> None:
 | 
						|
        """Raise an error if the component can not add any more labels."""
 | 
						|
        nO = None
 | 
						|
        if self.model.has_dim("nO"):
 | 
						|
            nO = self.model.get_dim("nO")
 | 
						|
        elif self.model.has_ref("output_layer") and self.model.get_ref("output_layer").has_dim("nO"):
 | 
						|
            nO = self.model.get_ref("output_layer").get_dim("nO")
 | 
						|
        if nO is not None and nO == len(self.labels):
 | 
						|
            if not self.is_resizable:
 | 
						|
                raise ValueError(Errors.E922.format(name=self.name, nO=self.model.get_dim("nO")))
 | 
						|
 | 
						|
    def set_output(self, nO: int) -> None:
 | 
						|
        if self.is_resizable:
 | 
						|
            self.model.attrs["resize_output"](self.model, nO)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError(Errors.E921)
 | 
						|
 | 
						|
    def use_params(self, params: dict):
 | 
						|
        """Modify the pipe's model, to use the given parameter values. At the
 | 
						|
        end of the context, the original parameters are restored.
 | 
						|
 | 
						|
        params (dict): The parameter values to use in the model.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#use_params
 | 
						|
        """
 | 
						|
        with self.model.use_params(params):
 | 
						|
            yield
 | 
						|
 | 
						|
    def finish_update(self, sgd: Optimizer) -> None:
 | 
						|
        """Update parameters using the current parameter gradients.
 | 
						|
        The Optimizer instance contains the functionality to perform
 | 
						|
        the stochastic gradient descent.
 | 
						|
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#finish_update
 | 
						|
        """
 | 
						|
        self.model.finish_update(sgd)
 | 
						|
 | 
						|
    def _validate_serialization_attrs(self):
 | 
						|
        """Check that the pipe implements the required attributes. If a subclass
 | 
						|
        implements a custom __init__ method but doesn't set these attributes,
 | 
						|
        they currently default to None, so we need to perform additonal checks.
 | 
						|
        """
 | 
						|
        if not hasattr(self, "vocab") or self.vocab is None:
 | 
						|
            raise ValueError(Errors.E899.format(name=util.get_object_name(self)))
 | 
						|
        if not hasattr(self, "model") or self.model is None:
 | 
						|
            raise ValueError(Errors.E898.format(name=util.get_object_name(self)))
 | 
						|
 | 
						|
    def to_bytes(self, *, exclude=tuple()):
 | 
						|
        """Serialize the pipe to a bytestring.
 | 
						|
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (bytes): The serialized object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#to_bytes
 | 
						|
        """
 | 
						|
        self._validate_serialization_attrs()
 | 
						|
        serialize = {}
 | 
						|
        if hasattr(self, "cfg") and self.cfg is not None:
 | 
						|
            serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | 
						|
        serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
 | 
						|
        serialize["model"] = self.model.to_bytes
 | 
						|
        return util.to_bytes(serialize, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, *, exclude=tuple()):
 | 
						|
        """Load the pipe from a bytestring.
 | 
						|
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (TrainablePipe): The loaded object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#from_bytes
 | 
						|
        """
 | 
						|
        self._validate_serialization_attrs()
 | 
						|
 | 
						|
        def load_model(b):
 | 
						|
            try:
 | 
						|
                self.model.from_bytes(b)
 | 
						|
            except AttributeError:
 | 
						|
                raise ValueError(Errors.E149) from None
 | 
						|
 | 
						|
        deserialize = {}
 | 
						|
        if hasattr(self, "cfg") and self.cfg is not None:
 | 
						|
            deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
 | 
						|
        deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude)
 | 
						|
        deserialize["model"] = load_model
 | 
						|
        util.from_bytes(bytes_data, deserialize, exclude)
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_disk(self, path, *, exclude=tuple()):
 | 
						|
        """Serialize the pipe to disk.
 | 
						|
 | 
						|
        path (str / Path): Path to a directory.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#to_disk
 | 
						|
        """
 | 
						|
        self._validate_serialization_attrs()
 | 
						|
        serialize = {}
 | 
						|
        if hasattr(self, "cfg") and self.cfg is not None:
 | 
						|
            serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | 
						|
        serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude)
 | 
						|
        serialize["model"] = lambda p: self.model.to_disk(p)
 | 
						|
        util.to_disk(path, serialize, exclude)
 | 
						|
 | 
						|
    def from_disk(self, path, *, exclude=tuple()):
 | 
						|
        """Load the pipe from disk.
 | 
						|
 | 
						|
        path (str / Path): Path to a directory.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (TrainablePipe): The loaded object.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/pipe#from_disk
 | 
						|
        """
 | 
						|
        self._validate_serialization_attrs()
 | 
						|
 | 
						|
        def load_model(p):
 | 
						|
            try:
 | 
						|
                with open(p, "rb") as mfile:
 | 
						|
                    self.model.from_bytes(mfile.read())
 | 
						|
            except AttributeError:
 | 
						|
                raise ValueError(Errors.E149) from None
 | 
						|
 | 
						|
        deserialize = {}
 | 
						|
        if hasattr(self, "cfg") and self.cfg is not None:
 | 
						|
            deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | 
						|
        deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude)
 | 
						|
        deserialize["model"] = load_model
 | 
						|
        util.from_disk(path, deserialize, exclude)
 | 
						|
        return self
 |