mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
03fefa37e2
* Add overwrite settings for more components For pipeline components where it's relevant and not already implemented, add an explicit `overwrite` setting that controls whether `set_annotations` overwrites existing annotation. For the `morphologizer`, add an additional setting `extend`, which controls whether the existing features are preserved. * +overwrite, +extend: overwrite values of existing features, add any new features * +overwrite, -extend: overwrite completely, removing any existing features * -overwrite, +extend: keep values of existing features, add any new features * -overwrite, -extend: do not modify the existing value if set In all cases an unset value will be set by `set_annotations`. Preserve current overwrite defaults: * True: morphologizer, entity linker * False: tagger, sentencizer, senter * Add backwards compat overwrite settings * Put empty line back Removed by accident in last commit * Set backwards-compatible defaults in __init__ Because the `TrainablePipe` serialization methods update `cfg`, there's no straightforward way to detect whether models serialized with a previous version are missing the overwrite settings. It would be possible in the sentencizer due to its separate serialization methods, however to keep the changes parallel, this also sets the default in `__init__`. * Remove traces Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
183 lines
6.7 KiB
Cython
183 lines
6.7 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
||
from typing import Optional, List, Callable
|
||
import srsly
|
||
|
||
from ..tokens.doc cimport Doc
|
||
|
||
from .pipe import Pipe
|
||
from .senter import senter_score
|
||
from ..language import Language
|
||
from ..scorer import Scorer
|
||
from .. import util
|
||
|
||
# see #9050
|
||
BACKWARD_OVERWRITE = False
|
||
|
||
@Language.factory(
|
||
"sentencizer",
|
||
assigns=["token.is_sent_start", "doc.sents"],
|
||
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||
)
|
||
def make_sentencizer(
|
||
nlp: Language,
|
||
name: str,
|
||
punct_chars: Optional[List[str]],
|
||
overwrite: bool,
|
||
scorer: Optional[Callable],
|
||
):
|
||
return Sentencizer(name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer)
|
||
|
||
|
||
class Sentencizer(Pipe):
|
||
"""Segment the Doc into sentences using a rule-based strategy.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer
|
||
"""
|
||
|
||
default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
|
||
'।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄',
|
||
'᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿',
|
||
'‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶',
|
||
'꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒',
|
||
'﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀',
|
||
'𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼',
|
||
'𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐',
|
||
'𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂',
|
||
'𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈',
|
||
'。', '。']
|
||
|
||
def __init__(
|
||
self,
|
||
name="sentencizer",
|
||
*,
|
||
punct_chars=None,
|
||
overwrite=BACKWARD_OVERWRITE,
|
||
scorer=senter_score,
|
||
):
|
||
"""Initialize the sentencizer.
|
||
|
||
punct_chars (list): Punctuation characters to split on. Will be
|
||
serialized with the nlp object.
|
||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||
Scorer.score_spans for the attribute "sents".
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#init
|
||
"""
|
||
self.name = name
|
||
if punct_chars:
|
||
self.punct_chars = set(punct_chars)
|
||
else:
|
||
self.punct_chars = set(self.default_punct_chars)
|
||
self.overwrite = overwrite
|
||
self.scorer = scorer
|
||
|
||
def __call__(self, doc):
|
||
"""Apply the sentencizer to a Doc and set Token.is_sent_start.
|
||
|
||
doc (Doc): The document to process.
|
||
RETURNS (Doc): The processed Doc.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#call
|
||
"""
|
||
error_handler = self.get_error_handler()
|
||
try:
|
||
tags = self.predict([doc])
|
||
self.set_annotations([doc], tags)
|
||
return doc
|
||
except Exception as e:
|
||
error_handler(self.name, self, [doc], e)
|
||
|
||
def predict(self, docs):
|
||
"""Apply the pipe to a batch of docs, without modifying them.
|
||
|
||
docs (Iterable[Doc]): The documents to predict.
|
||
RETURNS: The predictions for each document.
|
||
"""
|
||
if not any(len(doc) for doc in docs):
|
||
# Handle cases where there are no tokens in any docs.
|
||
guesses = [[] for doc in docs]
|
||
return guesses
|
||
guesses = []
|
||
for doc in docs:
|
||
doc_guesses = [False] * len(doc)
|
||
if len(doc) > 0:
|
||
start = 0
|
||
seen_period = False
|
||
doc_guesses[0] = True
|
||
for i, token in enumerate(doc):
|
||
is_in_punct_chars = token.text in self.punct_chars
|
||
if seen_period and not token.is_punct and not is_in_punct_chars:
|
||
doc_guesses[start] = True
|
||
start = token.i
|
||
seen_period = False
|
||
elif is_in_punct_chars:
|
||
seen_period = True
|
||
if start < len(doc):
|
||
doc_guesses[start] = True
|
||
guesses.append(doc_guesses)
|
||
return guesses
|
||
|
||
def set_annotations(self, docs, batch_tag_ids):
|
||
"""Modify a batch of documents, using pre-computed scores.
|
||
|
||
docs (Iterable[Doc]): The documents to modify.
|
||
scores: The tag IDs produced by Sentencizer.predict.
|
||
"""
|
||
if isinstance(docs, Doc):
|
||
docs = [docs]
|
||
cdef Doc doc
|
||
cdef int idx = 0
|
||
for i, doc in enumerate(docs):
|
||
doc_tag_ids = batch_tag_ids[i]
|
||
for j, tag_id in enumerate(doc_tag_ids):
|
||
if doc.c[j].sent_start == 0 or self.overwrite:
|
||
if tag_id:
|
||
doc.c[j].sent_start = 1
|
||
else:
|
||
doc.c[j].sent_start = -1
|
||
|
||
def to_bytes(self, *, exclude=tuple()):
|
||
"""Serialize the sentencizer to a bytestring.
|
||
|
||
RETURNS (bytes): The serialized object.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#to_bytes
|
||
"""
|
||
return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars), "overwrite": self.overwrite})
|
||
|
||
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
||
"""Load the sentencizer from a bytestring.
|
||
|
||
bytes_data (bytes): The data to load.
|
||
returns (Sentencizer): The loaded object.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#from_bytes
|
||
"""
|
||
cfg = srsly.msgpack_loads(bytes_data)
|
||
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
|
||
self.overwrite = cfg.get("overwrite", self.overwrite)
|
||
return self
|
||
|
||
def to_disk(self, path, *, exclude=tuple()):
|
||
"""Serialize the sentencizer to disk.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#to_disk
|
||
"""
|
||
path = util.ensure_path(path)
|
||
path = path.with_suffix(".json")
|
||
srsly.write_json(path, {"punct_chars": list(self.punct_chars), "overwrite": self.overwrite})
|
||
|
||
|
||
def from_disk(self, path, *, exclude=tuple()):
|
||
"""Load the sentencizer from disk.
|
||
|
||
DOCS: https://spacy.io/api/sentencizer#from_disk
|
||
"""
|
||
path = util.ensure_path(path)
|
||
path = path.with_suffix(".json")
|
||
cfg = srsly.read_json(path)
|
||
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
|
||
self.overwrite = cfg.get("overwrite", self.overwrite)
|
||
return self
|