mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			373 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
---
 | 
						|
title: SpanFinder
 | 
						|
tag: class,experimental
 | 
						|
source: spacy/pipeline/span_finder.py
 | 
						|
version: 3.6
 | 
						|
teaser:
 | 
						|
  'Pipeline component for identifying potentially overlapping spans of text'
 | 
						|
api_base_class: /api/pipe
 | 
						|
api_string_name: span_finder
 | 
						|
api_trainable: true
 | 
						|
---
 | 
						|
 | 
						|
The span finder identifies potentially overlapping, unlabeled spans. It
 | 
						|
identifies tokens that start or end spans and annotates unlabeled spans between
 | 
						|
starts and ends, with optional filters for min and max span length. It is
 | 
						|
intended for use in combination with a component like
 | 
						|
[`SpanCategorizer`](/api/spancategorizer) that may further filter or label the
 | 
						|
spans. Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the
 | 
						|
doc under `doc.spans[spans_key]`, where `spans_key` is a component config
 | 
						|
setting.
 | 
						|
 | 
						|
## Assigned Attributes {id="assigned-attributes"}
 | 
						|
 | 
						|
Predictions will be saved to `Doc.spans[spans_key]` as a
 | 
						|
[`SpanGroup`](/api/spangroup).
 | 
						|
 | 
						|
`spans_key` defaults to `"sc"`, but can be passed as a parameter. The
 | 
						|
`span_finder` component will overwrite any existing spans under the spans key
 | 
						|
`doc.spans[spans_key]`.
 | 
						|
 | 
						|
| Location               | Value                              |
 | 
						|
| ---------------------- | ---------------------------------- |
 | 
						|
| `Doc.spans[spans_key]` | The unlabeled spans. ~~SpanGroup~~ |
 | 
						|
 | 
						|
## Config and implementation {id="config"}
 | 
						|
 | 
						|
The default config is defined by the pipeline component factory and describes
 | 
						|
how the component should be configured. You can override its settings via the
 | 
						|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | 
						|
[`config.cfg` for training](/usage/training#config). See the
 | 
						|
[model architectures](/api/architectures) documentation for details on the
 | 
						|
architectures and their arguments and hyperparameters.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> from spacy.pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
 | 
						|
> config = {
 | 
						|
>     "threshold": 0.5,
 | 
						|
>     "spans_key": "my_spans",
 | 
						|
>     "max_length": None,
 | 
						|
>     "min_length": None,
 | 
						|
>     "model": DEFAULT_SPAN_FINDER_MODEL,
 | 
						|
> }
 | 
						|
> nlp.add_pipe("span_finder", config=config)
 | 
						|
> ```
 | 
						|
 | 
						|
| Setting      | Description                                                                                                                                                                                                            |
 | 
						|
| ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `model`      | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~                                                                                           |
 | 
						|
| `spans_key`  | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
 | 
						|
| `threshold`  | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~                                                                                                                                    |
 | 
						|
| `max_length` | Maximum length of the produced spans, defaults to `25`. ~~Optional[int]~~                                                                                                                                              |
 | 
						|
| `min_length` | Minimum length of the produced spans, defaults to `None` meaning shortest span length is 1. ~~Optional[int]~~                                                                                                          |
 | 
						|
| `scorer`     | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~                                                      |
 | 
						|
 | 
						|
```python
 | 
						|
%%GITHUB_SPACY/spacy/pipeline/span_finder.py
 | 
						|
```
 | 
						|
 | 
						|
## SpanFinder.\_\_init\_\_ {id="init",tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> # Construction via add_pipe with default model
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
>
 | 
						|
> # Construction via add_pipe with custom model
 | 
						|
> config = {"model": {"@architectures": "my_span_finder"}}
 | 
						|
> span_finder = nlp.add_pipe("span_finder", config=config)
 | 
						|
>
 | 
						|
> # Construction from class
 | 
						|
> from spacy.pipeline import SpanFinder
 | 
						|
> span_finder = SpanFinder(nlp.vocab, model)
 | 
						|
> ```
 | 
						|
 | 
						|
Create a new pipeline instance. In your application, you would normally use a
 | 
						|
shortcut for this and instantiate the component using its string name and
 | 
						|
[`nlp.add_pipe`](/api/language#create_pipe).
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                                                                                            |
 | 
						|
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `vocab`        | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                       |
 | 
						|
| `model`        | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~                                                                                           |
 | 
						|
| `name`         | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                    |
 | 
						|
| _keyword-only_ |                                                                                                                                                                                                                        |
 | 
						|
| `spans_key`    | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
 | 
						|
| `threshold`    | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~                                                                                                                                    |
 | 
						|
| `max_length`   | Maximum length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~                                                                                                                   |
 | 
						|
| `min_length`   | Minimum length of the produced spans, defaults to `None` meaning shortest span length is 1. ~~Optional[int]~~                                                                                                          |
 | 
						|
| `scorer`       | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~                                                      |
 | 
						|
 | 
						|
## SpanFinder.\_\_call\_\_ {id="call",tag="method"}
 | 
						|
 | 
						|
Apply the pipe to one document. The document is modified in place, and returned.
 | 
						|
This usually happens under the hood when the `nlp` object is called on a text
 | 
						|
and all pipeline components are applied to the `Doc` in order. Both
 | 
						|
[`__call__`](/api/spanfinder#call) and [`pipe`](/api/spanfinder#pipe) delegate
 | 
						|
to the [`predict`](/api/spanfinder#predict) and
 | 
						|
[`set_annotations`](/api/spanfinder#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> doc = nlp("This is a sentence.")
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> # This usually happens under the hood
 | 
						|
> processed = span_finder(doc)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                      |
 | 
						|
| ----------- | -------------------------------- |
 | 
						|
| `doc`       | The document to process. ~~Doc~~ |
 | 
						|
| **RETURNS** | The processed document. ~~Doc~~  |
 | 
						|
 | 
						|
## SpanFinder.pipe {id="pipe",tag="method"}
 | 
						|
 | 
						|
Apply the pipe to a stream of documents. This usually happens under the hood
 | 
						|
when the `nlp` object is called on a text and all pipeline components are
 | 
						|
applied to the `Doc` in order. Both [`__call__`](/api/spanfinder#call) and
 | 
						|
[`pipe`](/api/spanfinder#pipe) delegate to the
 | 
						|
[`predict`](/api/spanfinder#predict) and
 | 
						|
[`set_annotations`](/api/spanfinder#set_annotations) methods.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> for doc in span_finder.pipe(docs, batch_size=50):
 | 
						|
>     pass
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                   |
 | 
						|
| -------------- | ------------------------------------------------------------- |
 | 
						|
| `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | 
						|
| _keyword-only_ |                                                               |
 | 
						|
| `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | 
						|
| **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | 
						|
 | 
						|
## SpanFinder.initialize {id="initialize",tag="method"}
 | 
						|
 | 
						|
Initialize the component for training. `get_examples` should be a function that
 | 
						|
returns an iterable of [`Example`](/api/example) objects. **At least one example
 | 
						|
should be supplied.** The data examples are used to **initialize the model** of
 | 
						|
the component and can either be the full training data or a representative
 | 
						|
sample. Initialization includes validating the network and
 | 
						|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) This
 | 
						|
method is typically called by [`Language.initialize`](/api/language#initialize)
 | 
						|
and lets you customize arguments it receives via the
 | 
						|
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | 
						|
config.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> span_finder.initialize(lambda: examples, nlp=nlp)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                                                |
 | 
						|
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
						|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
 | 
						|
| _keyword-only_ |                                                                                                                                                                            |
 | 
						|
| `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                       |
 | 
						|
 | 
						|
## SpanFinder.predict {id="predict",tag="method"}
 | 
						|
 | 
						|
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | 
						|
modifying them.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> scores = span_finder.predict([doc1, doc2])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                                 |
 | 
						|
| ----------- | ------------------------------------------- |
 | 
						|
| `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | 
						|
| **RETURNS** | The model's prediction for each document.   |
 | 
						|
 | 
						|
## SpanFinder.set_annotations {id="set_annotations",tag="method"}
 | 
						|
 | 
						|
Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> scores = span_finder.predict(docs)
 | 
						|
> span_finder.set_annotations(docs, scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Description                                          |
 | 
						|
| -------- | ---------------------------------------------------- |
 | 
						|
| `docs`   | The documents to modify. ~~Iterable[Doc]~~           |
 | 
						|
| `scores` | The scores to set, produced by `SpanFinder.predict`. |
 | 
						|
 | 
						|
## SpanFinder.update {id="update",tag="method"}
 | 
						|
 | 
						|
Learn from a batch of [`Example`](/api/example) objects containing the
 | 
						|
predictions and gold-standard annotations, and update the component's model.
 | 
						|
Delegates to [`predict`](/api/spanfinder#predict) and
 | 
						|
[`get_loss`](/api/spanfinder#get_loss).
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> optimizer = nlp.initialize()
 | 
						|
> losses = span_finder.update(examples, sgd=optimizer)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                              |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | 
						|
| _keyword-only_ |                                                                                                                          |
 | 
						|
| `drop`         | The dropout rate. ~~float~~                                                                                              |
 | 
						|
| `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | 
						|
| `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | 
						|
| **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | 
						|
 | 
						|
## SpanFinder.get_loss {id="get_loss",tag="method"}
 | 
						|
 | 
						|
Find the loss and gradient of loss for the batch of documents and their
 | 
						|
predicted scores.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> scores = span_finder.predict([eg.predicted for eg in examples])
 | 
						|
> loss, d_loss = span_finder.get_loss(examples, scores)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                    |
 | 
						|
| -------------- | ------------------------------------------------------------------------------ |
 | 
						|
| `examples`     | The batch of examples. ~~Iterable[Example]~~                                   |
 | 
						|
| `spans_scores` | Scores representing the model's predictions. ~~Tuple[Ragged, Floats2d]~~       |
 | 
						|
| **RETURNS**    | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, Floats2d]~~ |
 | 
						|
 | 
						|
## SpanFinder.create_optimizer {id="create_optimizer",tag="method"}
 | 
						|
 | 
						|
Create an optimizer for the pipeline component.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> optimizer = span_finder.create_optimizer()
 | 
						|
> ```
 | 
						|
 | 
						|
| Name        | Description                  |
 | 
						|
| ----------- | ---------------------------- |
 | 
						|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
 | 
						|
 | 
						|
## SpanFinder.use_params {id="use_params",tag="method, contextmanager"}
 | 
						|
 | 
						|
Modify the pipe's model to use the given parameter values.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> with span_finder.use_params(optimizer.averages):
 | 
						|
>     span_finder.to_disk("/best_model")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name     | Description                                        |
 | 
						|
| -------- | -------------------------------------------------- |
 | 
						|
| `params` | The parameter values to use in the model. ~~dict~~ |
 | 
						|
 | 
						|
## SpanFinder.to_disk {id="to_disk",tag="method"}
 | 
						|
 | 
						|
Serialize the pipe to disk.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> span_finder.to_disk("/path/to/span_finder")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                                                                |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
						|
| `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                                                            |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | 
						|
 | 
						|
## SpanFinder.from_disk {id="from_disk",tag="method"}
 | 
						|
 | 
						|
Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> span_finder.from_disk("/path/to/span_finder")
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                     |
 | 
						|
| -------------- | ----------------------------------------------------------------------------------------------- |
 | 
						|
| `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | 
						|
| _keyword-only_ |                                                                                                 |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | 
						|
| **RETURNS**    | The modified `SpanFinder` object. ~~SpanFinder~~                                                |
 | 
						|
 | 
						|
## SpanFinder.to_bytes {id="to_bytes",tag="method"}
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> span_finder_bytes = span_finder.to_bytes()
 | 
						|
> ```
 | 
						|
 | 
						|
Serialize the pipe to a bytestring.
 | 
						|
 | 
						|
| Name           | Description                                                                                 |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						|
| _keyword-only_ |                                                                                             |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						|
| **RETURNS**    | The serialized form of the `SpanFinder` object. ~~bytes~~                                   |
 | 
						|
 | 
						|
## SpanFinder.from_bytes {id="from_bytes",tag="method"}
 | 
						|
 | 
						|
Load the pipe from a bytestring. Modifies the object in place and returns it.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> span_finder_bytes = span_finder.to_bytes()
 | 
						|
> span_finder = nlp.add_pipe("span_finder")
 | 
						|
> span_finder.from_bytes(span_finder_bytes)
 | 
						|
> ```
 | 
						|
 | 
						|
| Name           | Description                                                                                 |
 | 
						|
| -------------- | ------------------------------------------------------------------------------------------- |
 | 
						|
| `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | 
						|
| _keyword-only_ |                                                                                             |
 | 
						|
| `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | 
						|
| **RETURNS**    | The `SpanFinder` object. ~~SpanFinder~~                                                     |
 | 
						|
 | 
						|
## Serialization fields {id="serialization-fields"}
 | 
						|
 | 
						|
During serialization, spaCy will export several data fields used to restore
 | 
						|
different aspects of the object. If needed, you can exclude them from
 | 
						|
serialization by passing in the string names via the `exclude` argument.
 | 
						|
 | 
						|
> #### Example
 | 
						|
>
 | 
						|
> ```python
 | 
						|
> data = span_finder.to_disk("/path", exclude=["vocab"])
 | 
						|
> ```
 | 
						|
 | 
						|
| Name    | Description                                                    |
 | 
						|
| ------- | -------------------------------------------------------------- |
 | 
						|
| `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | 
						|
| `cfg`   | The config file. You usually don't want to exclude this.       |
 | 
						|
| `model` | The binary model data. You usually don't want to exclude this. |
 |