spaCy/spacy/util.py
2018-12-01 04:55:48 +01:00

682 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf8
from __future__ import unicode_literals, print_function
import os
import ujson
import pkg_resources
import importlib
import regex as re
from pathlib import Path
import random
from collections import OrderedDict
from thinc.neural._classes.model import Model
from thinc.neural.ops import NumpyOps
import functools
import cytoolz
import itertools
import numpy.random
from .symbols import ORTH
from .compat import cupy, CudaStream, path2str, basestring_, unicode_
from .compat import import_file, json_dumps
from .errors import Errors
# Import these directly from Thinc, so that we're sure we always have the
# same version.
from thinc.neural._classes.model import msgpack # noqa: F401
from thinc.neural._classes.model import msgpack_numpy # noqa: F401
LANGUAGES = {}
_data_path = Path(__file__).parent / "data"
_PRINT_ENV = False
def set_env_log(value):
global _PRINT_ENV
_PRINT_ENV = value
def get_lang_class(lang):
"""Import and load a Language class.
lang (unicode): Two-letter language code, e.g. 'en'.
RETURNS (Language): Language class.
"""
global LANGUAGES
if lang not in LANGUAGES:
try:
module = importlib.import_module(".lang.%s" % lang, "spacy")
except ImportError:
raise ImportError(Errors.E048.format(lang=lang))
LANGUAGES[lang] = getattr(module, module.__all__[0])
return LANGUAGES[lang]
def set_lang_class(name, cls):
"""Set a custom Language class name that can be loaded via get_lang_class.
name (unicode): Name of Language class.
cls (Language): Language class.
"""
global LANGUAGES
LANGUAGES[name] = cls
def get_data_path(require_exists=True):
"""Get path to spaCy data directory.
require_exists (bool): Only return path if it exists, otherwise None.
RETURNS (Path or None): Data path or None.
"""
if not require_exists:
return _data_path
else:
return _data_path if _data_path.exists() else None
def set_data_path(path):
"""Set path to spaCy data directory.
path (unicode or Path): Path to new data directory.
"""
global _data_path
_data_path = ensure_path(path)
def ensure_path(path):
"""Ensure string is converted to a Path.
path: Anything. If string, it's converted to Path.
RETURNS: Path or original argument.
"""
if isinstance(path, basestring_):
return Path(path)
else:
return path
def load_model(name, **overrides):
"""Load a model from a shortcut link, package or data path.
name (unicode): Package name, shortcut link or model path.
**overrides: Specific overrides, like pipeline components to disable.
RETURNS (Language): `Language` class with the loaded model.
"""
data_path = get_data_path()
if not data_path or not data_path.exists():
raise IOError(Errors.E049.format(path=path2str(data_path)))
if isinstance(name, basestring_): # in data dir / shortcut
if name in set([d.name for d in data_path.iterdir()]):
return load_model_from_link(name, **overrides)
if is_package(name): # installed as package
return load_model_from_package(name, **overrides)
if Path(name).exists(): # path to model data directory
return load_model_from_path(Path(name), **overrides)
elif hasattr(name, "exists"): # Path or Path-like to model data
return load_model_from_path(name, **overrides)
raise IOError(Errors.E050.format(name=name))
def load_model_from_link(name, **overrides):
"""Load a model from a shortcut link, or directory in spaCy data path."""
path = get_data_path() / name / "__init__.py"
try:
cls = import_file(name, path)
except AttributeError:
raise IOError(Errors.E051.format(name=name))
return cls.load(**overrides)
def load_model_from_package(name, **overrides):
"""Load a model from an installed package."""
cls = importlib.import_module(name)
return cls.load(**overrides)
def load_model_from_path(model_path, meta=False, **overrides):
"""Load a model from a data directory path. Creates Language class with
pipeline from meta.json and then calls from_disk() with path."""
if not meta:
meta = get_model_meta(model_path)
cls = get_lang_class(meta["lang"])
nlp = cls(meta=meta, **overrides)
pipeline = meta.get("pipeline", [])
disable = overrides.get("disable", [])
if pipeline is True:
pipeline = nlp.Defaults.pipe_names
elif pipeline in (False, None):
pipeline = []
for name in pipeline:
if name not in disable:
config = meta.get("pipeline_args", {}).get(name, {})
component = nlp.create_pipe(name, config=config)
nlp.add_pipe(component, name=name)
return nlp.from_disk(model_path)
def load_model_from_init_py(init_file, **overrides):
"""Helper function to use in the `load()` method of a model package's
__init__.py.
init_file (unicode): Path to model's __init__.py, i.e. `__file__`.
**overrides: Specific overrides, like pipeline components to disable.
RETURNS (Language): `Language` class with loaded model.
"""
model_path = Path(init_file).parent
meta = get_model_meta(model_path)
data_dir = "%s_%s-%s" % (meta["lang"], meta["name"], meta["version"])
data_path = model_path / data_dir
if not model_path.exists():
raise IOError(Errors.E052.format(path=path2str(data_path)))
return load_model_from_path(data_path, meta, **overrides)
def get_model_meta(path):
"""Get model meta.json from a directory path and validate its contents.
path (unicode or Path): Path to model directory.
RETURNS (dict): The model's meta data.
"""
model_path = ensure_path(path)
if not model_path.exists():
raise IOError(Errors.E052.format(path=path2str(model_path)))
meta_path = model_path / "meta.json"
if not meta_path.is_file():
raise IOError(Errors.E053.format(path=meta_path))
meta = read_json(meta_path)
for setting in ["lang", "name", "version"]:
if setting not in meta or not meta[setting]:
raise ValueError(Errors.E054.format(setting=setting))
return meta
def is_package(name):
"""Check if string maps to a package installed via pip.
name (unicode): Name of package.
RETURNS (bool): True if installed package, False if not.
"""
name = name.lower() # compare package name against lowercase name
packages = pkg_resources.working_set.by_key.keys()
for package in packages:
if package.lower().replace("-", "_") == name:
return True
return False
def get_package_path(name):
"""Get the path to an installed package.
name (unicode): Package name.
RETURNS (Path): Path to installed package.
"""
name = name.lower() # use lowercase version to be safe
# Here we're importing the module just to find it. This is worryingly
# indirect, but it's otherwise very difficult to find the package.
pkg = importlib.import_module(name)
return Path(pkg.__file__).parent
def get_entry_points(key):
"""Get registered entry points from other packages for a given key, e.g.
'spacy_factories' and return them as a dictionary, keyed by name.
key (unicode): Entry point name.
RETURNS (dict): Entry points, keyed by name.
"""
result = {}
for entry_point in pkg_resources.iter_entry_points(key):
result[entry_point.name] = entry_point.load()
return result
def is_in_jupyter():
"""Check if user is running spaCy from a Jupyter notebook by detecting the
IPython kernel. Mainly used for the displaCy visualizer.
RETURNS (bool): True if in Jupyter, False if not.
"""
try:
cfg = get_ipython().config
if cfg["IPKernelApp"]["parent_appname"] == "ipython-notebook":
return True
except NameError:
return False
return False
def get_cuda_stream(require=False):
if CudaStream is None:
return None
elif isinstance(Model.ops, NumpyOps):
return None
else:
return CudaStream()
def get_async(stream, numpy_array):
if cupy is None:
return numpy_array
else:
array = cupy.ndarray(numpy_array.shape, order="C", dtype=numpy_array.dtype)
array.set(numpy_array, stream=stream)
return array
def env_opt(name, default=None):
if type(default) is float:
type_convert = float
else:
type_convert = int
if "SPACY_" + name.upper() in os.environ:
value = type_convert(os.environ["SPACY_" + name.upper()])
if _PRINT_ENV:
print(name, "=", repr(value), "via", "$SPACY_" + name.upper())
return value
elif name in os.environ:
value = type_convert(os.environ[name])
if _PRINT_ENV:
print(name, "=", repr(value), "via", "$" + name)
return value
else:
if _PRINT_ENV:
print(name, "=", repr(default), "by default")
return default
def read_regex(path):
path = ensure_path(path)
with path.open() as file_:
entries = file_.read().split("\n")
expression = "|".join(
["^" + re.escape(piece) for piece in entries if piece.strip()]
)
return re.compile(expression)
def compile_prefix_regex(entries):
if "(" in entries:
# Handle deprecated data
expression = "|".join(
["^" + re.escape(piece) for piece in entries if piece.strip()]
)
return re.compile(expression)
else:
expression = "|".join(["^" + piece for piece in entries if piece.strip()])
return re.compile(expression)
def compile_suffix_regex(entries):
expression = "|".join([piece + "$" for piece in entries if piece.strip()])
return re.compile(expression)
def compile_infix_regex(entries):
expression = "|".join([piece for piece in entries if piece.strip()])
return re.compile(expression)
def add_lookups(default_func, *lookups):
"""Extend an attribute function with special cases. If a word is in the
lookups, the value is returned. Otherwise the previous function is used.
default_func (callable): The default function to execute.
*lookups (dict): Lookup dictionary mapping string to attribute value.
RETURNS (callable): Lexical attribute getter.
"""
# This is implemented as functools.partial instead of a closure, to allow
# pickle to work.
return functools.partial(_get_attr_unless_lookup, default_func, lookups)
def _get_attr_unless_lookup(default_func, lookups, string):
for lookup in lookups:
if string in lookup:
return lookup[string]
return default_func(string)
def update_exc(base_exceptions, *addition_dicts):
"""Update and validate tokenizer exceptions. Will overwrite exceptions.
base_exceptions (dict): Base exceptions.
*addition_dicts (dict): Exceptions to add to the base dict, in order.
RETURNS (dict): Combined tokenizer exceptions.
"""
exc = dict(base_exceptions)
for additions in addition_dicts:
for orth, token_attrs in additions.items():
if not all(isinstance(attr[ORTH], unicode_) for attr in token_attrs):
raise ValueError(Errors.E055.format(key=orth, orths=token_attrs))
described_orth = "".join(attr[ORTH] for attr in token_attrs)
if orth != described_orth:
raise ValueError(Errors.E056.format(key=orth, orths=described_orth))
exc.update(additions)
exc = expand_exc(exc, "'", "")
return exc
def expand_exc(excs, search, replace):
"""Find string in tokenizer exceptions, duplicate entry and replace string.
For example, to add additional versions with typographic apostrophes.
excs (dict): Tokenizer exceptions.
search (unicode): String to find and replace.
replace (unicode): Replacement.
RETURNS (dict): Combined tokenizer exceptions.
"""
def _fix_token(token, search, replace):
fixed = dict(token)
fixed[ORTH] = fixed[ORTH].replace(search, replace)
return fixed
new_excs = dict(excs)
for token_string, tokens in excs.items():
if search in token_string:
new_key = token_string.replace(search, replace)
new_value = [_fix_token(t, search, replace) for t in tokens]
new_excs[new_key] = new_value
return new_excs
def normalize_slice(length, start, stop, step=None):
if not (step is None or step == 1):
raise ValueError(Errors.E057)
if start is None:
start = 0
elif start < 0:
start += length
start = min(length, max(0, start))
if stop is None:
stop = length
elif stop < 0:
stop += length
stop = min(length, max(start, stop))
return start, stop
def minibatch(items, size=8):
"""Iterate over batches of items. `size` may be an iterator,
so that batch-size can vary on each step.
"""
if isinstance(size, int):
size_ = itertools.repeat(size)
else:
size_ = size
items = iter(items)
while True:
batch_size = next(size_)
batch = list(cytoolz.take(int(batch_size), items))
if len(batch) == 0:
break
yield list(batch)
def compounding(start, stop, compound):
"""Yield an infinite series of compounding values. Each time the
generator is called, a value is produced by multiplying the previous
value by the compound rate.
EXAMPLE:
>>> sizes = compounding(1., 10., 1.5)
>>> assert next(sizes) == 1.
>>> assert next(sizes) == 1 * 1.5
>>> assert next(sizes) == 1.5 * 1.5
"""
def clip(value):
return max(value, stop) if (start > stop) else min(value, stop)
curr = float(start)
while True:
yield clip(curr)
curr *= compound
def stepping(start, stop, steps):
"""Yield an infinite series of values that step from a start value to a
final value over some number of steps. Each step is (stop-start)/steps.
After the final value is reached, the generator continues yielding that
value.
EXAMPLE:
>>> sizes = stepping(1., 200., 100)
>>> assert next(sizes) == 1.
>>> assert next(sizes) == 1 * (200.-1.) / 100
>>> assert next(sizes) == 1 + (200.-1.) / 100 + (200.-1.) / 100
"""
def clip(value):
return max(value, stop) if (start > stop) else min(value, stop)
curr = float(start)
while True:
yield clip(curr)
curr += (stop - start) / steps
def decaying(start, stop, decay):
"""Yield an infinite series of linearly decaying values."""
def clip(value):
return max(value, stop) if (start > stop) else min(value, stop)
nr_upd = 1.0
while True:
yield clip(start * 1.0 / (1.0 + decay * nr_upd))
nr_upd += 1
def minibatch_by_words(items, size, tuples=True, count_words=len):
"""Create minibatches of a given number of words."""
if isinstance(size, int):
size_ = itertools.repeat(size)
else:
size_ = size
items = iter(items)
while True:
batch_size = next(size_)
batch = []
while batch_size >= 0:
try:
if tuples:
doc, gold = next(items)
else:
doc = next(items)
except StopIteration:
if batch:
yield batch
return
batch_size -= count_words(doc)
if tuples:
batch.append((doc, gold))
else:
batch.append(doc)
if batch:
yield batch
def itershuffle(iterable, bufsize=1000):
"""Shuffle an iterator. This works by holding `bufsize` items back
and yielding them sometime later. Obviously, this is not unbiased
but should be good enough for batching. Larger bufsize means less bias.
From https://gist.github.com/andres-erbsen/1307752
iterable (iterable): Iterator to shuffle.
bufsize (int): Items to hold back.
YIELDS (iterable): The shuffled iterator.
"""
iterable = iter(iterable)
buf = []
try:
while True:
for i in range(random.randint(1, bufsize - len(buf))):
buf.append(next(iterable))
random.shuffle(buf)
for i in range(random.randint(1, bufsize)):
if buf:
yield buf.pop()
else:
break
except StopIteration:
random.shuffle(buf)
while buf:
yield buf.pop()
raise StopIteration
def read_json(location):
"""Open and load JSON from file.
location (Path): Path to JSON file.
RETURNS (dict): Loaded JSON content.
"""
location = ensure_path(location)
with location.open("r", encoding="utf8") as f:
return ujson.load(f)
def write_json(file_path, contents):
"""Create a .json file and dump contents.
file_path (unicode / Path): The path to the output file.
contents: The JSON-serializable contents to output.
"""
with Path(file_path).open("w", encoding="utf8") as f:
f.write(json_dumps(contents))
def read_jsonl(file_path):
"""Read a .jsonl file and yield its contents line by line.
file_path (unicode / Path): The file path.
YIELDS: The loaded JSON contents of each line.
"""
with Path(file_path).open("r", encoding="utf8") as f:
for line in f:
try: # hack to handle broken jsonl
yield ujson.loads(line.strip())
except ValueError:
continue
def write_jsonl(file_path, lines):
"""Create a .jsonl file and dump contents.
file_path (unicode / Path): The path to the output file.
lines (list): The JSON-serializable contents of each line.
"""
data = [json_dumps(line) for line in lines]
with Path(file_path).open("w", encoding="utf-8") as f:
f.write("\n".join(data))
def is_json_serializable(obj):
"""Check if a Python object is JSON-serializable."""
if hasattr(obj, "__call__"):
# Check this separately here to prevent infinite recursions
return False
try:
ujson.dumps(obj)
return True
except TypeError:
return False
def to_bytes(getters, exclude):
serialized = OrderedDict()
for key, getter in getters.items():
if key not in exclude:
serialized[key] = getter()
return msgpack.dumps(serialized, use_bin_type=True)
def from_bytes(bytes_data, setters, exclude):
msg = msgpack.loads(bytes_data, raw=False)
for key, setter in setters.items():
if key not in exclude and key in msg:
setter(msg[key])
return msg
def to_disk(path, writers, exclude):
path = ensure_path(path)
if not path.exists():
path.mkdir()
for key, writer in writers.items():
if key not in exclude:
writer(path / key)
return path
def from_disk(path, readers, exclude):
path = ensure_path(path)
for key, reader in readers.items():
if key not in exclude:
reader(path / key)
return path
def minify_html(html):
"""Perform a template-specific, rudimentary HTML minification for displaCy.
Disclaimer: NOT a general-purpose solution, only removes indentation and
newlines.
html (unicode): Markup to minify.
RETURNS (unicode): "Minified" HTML.
"""
return html.strip().replace(" ", "").replace("\n", "")
def escape_html(text):
"""Replace <, >, &, " with their HTML encoded representation. Intended to
prevent HTML errors in rendered displaCy markup.
text (unicode): The original text.
RETURNS (unicode): Equivalent text to be safely used within HTML.
"""
text = text.replace("&", "&amp;")
text = text.replace("<", "&lt;")
text = text.replace(">", "&gt;")
text = text.replace('"', "&quot;")
return text
def use_gpu(gpu_id):
try:
import cupy.cuda.device
except ImportError:
return None
from thinc.neural.ops import CupyOps
device = cupy.cuda.device.Device(gpu_id)
device.use()
Model.ops = CupyOps()
Model.Ops = CupyOps
return device
def fix_random_seed(seed=0):
random.seed(seed)
numpy.random.seed(seed)
class SimpleFrozenDict(dict):
"""Simplified implementation of a frozen dict, mainly used as default
function or method argument (for arguments that should default to empty
dictionary). Will raise an error if user or spaCy attempts to add to dict.
"""
def __setitem__(self, key, value):
raise NotImplementedError(Errors.E095)
def pop(self, key, default=None):
raise NotImplementedError(Errors.E095)
def update(self, other):
raise NotImplementedError(Errors.E095)