mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-29 23:17:59 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			227 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Quick Start
 | |
| ===========
 | |
| 
 | |
| 
 | |
| Install
 | |
| -------
 | |
| 
 | |
| .. py:currentmodule:: spacy
 | |
| 
 | |
| 
 | |
| With Python 2.7 or Python 3, using Linux or OSX, run:
 | |
| 
 | |
| .. code:: bash
 | |
| 
 | |
|     $ pip install spacy
 | |
|     $ python -m spacy.en.download
 | |
| 
 | |
| .. _300 mb of data: http://s3-us-west-1.amazonaws.com/media.spacynlp.com/en_data_all-0.4.tgz
 | |
| 
 | |
| 
 | |
| The download command fetches and installs about 300mb of data, for the 
 | |
| parser model and word vectors, which it installs within the spacy.en package directory.
 | |
| 
 | |
| If you're stuck using a server with an old version of Python, and you don't
 | |
| have root access, I've prepared a bootstrap script to help you compile a local
 | |
| Python install. Run:
 | |
| 
 | |
| .. code:: bash
 | |
| 
 | |
|     $ curl https://raw.githubusercontent.com/honnibal/spaCy/master/bootstrap_python_env.sh | bash && source .env/bin/activate
 | |
| 
 | |
| The other way to install the package is to clone the github repository, and
 | |
| build it from source.  This installs an additional dependency, Cython.
 | |
| If you're using Python 2, I also recommend installing fabric and fabtools ---
 | |
| this is how I build the project.
 | |
| 
 | |
| .. code:: bash
 | |
| 
 | |
|     $ git clone https://github.com/honnibal/spaCy.git
 | |
|     $ cd spaCy
 | |
|     $ virtualenv .env && source .env/bin/activate
 | |
|     $ export PYTHONPATH=`pwd`
 | |
|     $ pip install -r requirements.txt
 | |
|     $ python setup.py build_ext --inplace
 | |
|     $ python -m spacy.en.download
 | |
|     $ pip install pytest
 | |
|     $ py.test tests/
 | |
| 
 | |
| Python packaging is awkward at the best of times, and it's particularly tricky
 | |
| with C extensions, built via Cython, requiring large data files. So, please
 | |
| report issues as you encounter them, and bear with me :)
 | |
| 
 | |
| Usage
 | |
| -----
 | |
| 
 | |
| The main entry-point is :meth:`en.English.__call__`, which accepts a unicode string
 | |
| as an argument, and returns a :py:class:`tokens.Tokens` object.  You can
 | |
| iterate over it to get :py:class:`tokens.Token` objects, which provide
 | |
| a convenient API:
 | |
| 
 | |
|     >>> from __future__ import unicode_literals # If Python 2
 | |
|     >>> from spacy.en import English
 | |
|     >>> nlp = English()
 | |
|     >>> tokens = nlp(u'I ate the pizza with anchovies.')
 | |
|     >>> pizza = tokens[3]
 | |
|     >>> (pizza.orth, pizza.orth_, pizza.head.lemma, pizza.head.lemma_)
 | |
|     ... (14702, u'pizza', 14702, u'eat')
 | |
| 
 | |
| spaCy maps all strings to sequential integer IDs --- a common trick in NLP.
 | |
| If an attribute `Token.foo` is an integer ID, then `Token.foo_` is the string,
 | |
| e.g. `pizza.orth_` and `pizza.orth` provide the integer ID and the string of
 | |
| the original orthographic form of the word.
 | |
| 
 | |
|   .. note::  en.English.__call__ is stateful --- it has an important **side-effect**.
 | |
| 
 | |
|     When it processes a previously unseen word, it increments the ID counter,
 | |
|     assigns the ID to the string, and writes the mapping in
 | |
|     :py:data:`English.vocab.strings` (instance of
 | |
|     :py:class:`strings.StringStore`).
 | |
|     Future releases will feature a way to reconcile  mappings, but for now, you
 | |
|     should only work with one instance of the pipeline at a time.
 | |
| 
 | |
| 
 | |
| (Most of the) API at a glance
 | |
| -----------------------------
 | |
| 
 | |
| **Process the string:**
 | |
| 
 | |
|   .. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
 | |
| 
 | |
|     .. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens 
 | |
| 
 | |
|     +-----------------+--------------+--------------+
 | |
|     | Attribute       | Type         | Its API      |
 | |
|     +=================+==============+==============+
 | |
|     | vocab           | Vocab        | __getitem__  |
 | |
|     +-----------------+--------------+--------------+
 | |
|     | vocab.strings   | StingStore   | __getitem__  |
 | |
|     +-----------------+--------------+--------------+
 | |
|     | tokenizer       | Tokenizer    | __call__     |
 | |
|     +-----------------+--------------+--------------+
 | |
|     | tagger          | EnPosTagger  | __call__     |
 | |
|     +-----------------+--------------+--------------+
 | |
|     | parser          | GreedyParser | __call__     |
 | |
|     +-----------------+--------------+--------------+
 | |
| 
 | |
| **Get dict or numpy array:**
 | |
| 
 | |
|     .. py:method:: tokens.Tokens.to_array(self, attr_ids: List[int]) --> ndarray[ndim=2, dtype=long]
 | |
| 
 | |
|     .. py:method:: tokens.Tokens.count_by(self, attr_id: int) --> Dict[int, int]
 | |
| 
 | |
| **Get Token objects**
 | |
| 
 | |
|   .. py:method:: tokens.Tokens.__getitem__(self, i) --> Token
 | |
| 
 | |
|   .. py:method:: tokens.Tokens.__iter__(self) --> Iterator[Token]
 | |
| 
 | |
| **Embedded word representenations**
 | |
| 
 | |
|   .. py:attribute:: tokens.Token.repvec
 | |
|   
 | |
|   .. py:attribute:: lexeme.Lexeme.repvec
 | |
| 
 | |
| 
 | |
| **Navigate to tree- or string-neighbor tokens**
 | |
| 
 | |
|   .. py:method:: nbor(self, i=1) --> Token
 | |
| 
 | |
|   .. py:method:: child(self, i=1) --> Token
 | |
| 
 | |
|   .. py:method:: sibling(self, i=1) --> Token
 | |
| 
 | |
|   .. py:attribute:: head: Token
 | |
| 
 | |
|   .. py:attribute:: dep: int
 | |
| 
 | |
| **Align to original string**
 | |
| 
 | |
|   .. py:attribute:: string: unicode
 | |
|     
 | |
|     Padded with original whitespace.
 | |
| 
 | |
|   .. py:attribute:: length: int
 | |
| 
 | |
|     Length, in unicode code-points. Equal to len(self.orth_).
 | |
|     
 | |
|   .. py:attribute:: idx: int
 | |
| 
 | |
|     Starting offset of word in the original string.
 | |
| 
 | |
| 
 | |
| 
 | |
| Features
 | |
| --------
 | |
| 
 | |
| 
 | |
| **Boolean features**
 | |
| 
 | |
|     >>> lexeme = nlp.vocab[u'Apple']
 | |
|     >>> lexeme.is_alpha, is_upper
 | |
|     True, False
 | |
|     >>> tokens = nlp('Apple computers')
 | |
|     >>> tokens[0].is_alpha, tokens[0].is_upper
 | |
|     >>> True, False
 | |
|     >>> from spact.en.attrs import IS_ALPHA, IS_UPPER
 | |
|     >>> tokens.to_array((IS_ALPHA, IS_UPPER))[0]
 | |
|     array([1, 0])
 | |
| 
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_alpha | :py:meth:`str.isalpha`                                        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_digit | :py:meth:`str.isdigit`                                        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_lower | :py:meth:`str.islower`                                        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_title | :py:meth:`str.istitle`                                        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_upper | :py:meth:`str.isupper`                                        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_ascii | all(ord(c) < 128 for c in string)                             |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | is_punct | all(unicodedata.category(c).startswith('P') for c in string)  |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | like_url | Using various heuristics, does the string resemble a URL?     |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | like_num | "Two", "10", "1,000", "10.54", "1/2" etc all match            |
 | |
|   +----------+---------------------------------------------------------------+
 | |
| 
 | |
| **String-transform Features**
 | |
| 
 | |
| 
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | orth     | The original string, unmodified.                              |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | lower    | The original string, forced to lower-case                     |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | norm     | The string after additional normalization                     |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | shape    | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d    |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | prefix   | A short slice from the start of the string.                   |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | suffix   | A short slice from the end of the string.                     |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | lemma    | The word's lemma, i.e. morphological suffixes removed         |
 | |
|   +----------+---------------------------------------------------------------+
 | |
| 
 | |
| **Syntactic labels**
 | |
| 
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | pos      | The word's part-of-speech, from the Google Universal Tag Set  |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | tag      | A fine-grained morphosyntactic tag, e.g. VBZ, NNS, etc        |
 | |
|   +----------+---------------------------------------------------------------+
 | |
|   | dep      | Dependency type label between word and its head, e.g. subj    |
 | |
|   +----------+---------------------------------------------------------------+
 | |
| 
 | |
| **Distributional**
 | |
| 
 | |
|   +---------+-----------------------------------------------------------+
 | |
|   | cluster | Brown cluster ID of the word                              |
 | |
|   +---------+-----------------------------------------------------------+
 | |
|   | prob    | Log probability of word, smoothed with Simple Good-Turing |
 | |
|   +---------+-----------------------------------------------------------+
 | |
| 
 |