mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
337 lines
14 KiB
Python
337 lines
14 KiB
Python
from typing import Optional, List, Union, cast
|
|
from thinc.types import Floats2d, Ints2d, Ragged
|
|
from thinc.api import chain, clone, concatenate, with_array, with_padded
|
|
from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed
|
|
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
|
|
|
|
from ...tokens import Doc
|
|
from ...util import registry
|
|
from ...errors import Errors
|
|
from ...ml import _character_embed
|
|
from ..staticvectors import StaticVectors
|
|
from ..featureextractor import FeatureExtractor
|
|
from ...pipeline.tok2vec import Tok2VecListener
|
|
from ...attrs import intify_attr
|
|
|
|
|
|
@registry.architectures("spacy.Tok2VecListener.v1")
|
|
def tok2vec_listener_v1(width: int, upstream: str = "*"):
|
|
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
|
|
return tok2vec
|
|
|
|
|
|
def get_tok2vec_width(model: Model):
|
|
nO = None
|
|
if model.has_ref("tok2vec"):
|
|
tok2vec = model.get_ref("tok2vec")
|
|
if tok2vec.has_dim("nO"):
|
|
nO = tok2vec.get_dim("nO")
|
|
elif tok2vec.has_ref("listener"):
|
|
nO = tok2vec.get_ref("listener").get_dim("nO")
|
|
return nO
|
|
|
|
|
|
@registry.architectures("spacy.HashEmbedCNN.v2")
|
|
def build_hash_embed_cnn_tok2vec(
|
|
*,
|
|
width: int,
|
|
depth: int,
|
|
embed_size: int,
|
|
window_size: int,
|
|
maxout_pieces: int,
|
|
subword_features: bool,
|
|
pretrained_vectors: Optional[bool],
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Build spaCy's 'standard' tok2vec layer, which uses hash embedding
|
|
with subword features and a CNN with layer-normalized maxout.
|
|
|
|
width (int): The width of the input and output. These are required to be the
|
|
same, so that residual connections can be used. Recommended values are
|
|
96, 128 or 300.
|
|
depth (int): The number of convolutional layers to use. Recommended values
|
|
are between 2 and 8.
|
|
window_size (int): The number of tokens on either side to concatenate during
|
|
the convolutions. The receptive field of the CNN will be
|
|
depth * (window_size * 2 + 1), so a 4-layer network with window_size of
|
|
2 will be sensitive to 17 words at a time. Recommended value is 1.
|
|
embed_size (int): The number of rows in the hash embedding tables. This can
|
|
be surprisingly small, due to the use of the hash embeddings. Recommended
|
|
values are between 2000 and 10000.
|
|
maxout_pieces (int): The number of pieces to use in the maxout non-linearity.
|
|
If 1, the Mish non-linearity is used instead. Recommended values are 1-3.
|
|
subword_features (bool): Whether to also embed subword features, specifically
|
|
the prefix, suffix and word shape. This is recommended for alphabetic
|
|
languages like English, but not if single-character tokens are used for
|
|
a language such as Chinese.
|
|
pretrained_vectors (bool): Whether to also use static vectors.
|
|
"""
|
|
if subword_features:
|
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
|
row_sizes = [embed_size, embed_size // 2, embed_size // 2, embed_size // 2]
|
|
else:
|
|
attrs = ["NORM"]
|
|
row_sizes = [embed_size]
|
|
return build_Tok2Vec_model(
|
|
embed=MultiHashEmbed(
|
|
width=width,
|
|
rows=row_sizes,
|
|
attrs=attrs,
|
|
include_static_vectors=bool(pretrained_vectors),
|
|
),
|
|
encode=MaxoutWindowEncoder(
|
|
width=width,
|
|
depth=depth,
|
|
window_size=window_size,
|
|
maxout_pieces=maxout_pieces,
|
|
),
|
|
)
|
|
|
|
|
|
@registry.architectures("spacy.Tok2Vec.v2")
|
|
def build_Tok2Vec_model(
|
|
embed: Model[List[Doc], List[Floats2d]],
|
|
encode: Model[List[Floats2d], List[Floats2d]],
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct a tok2vec model out of embedding and encoding subnetworks.
|
|
See https://explosion.ai/blog/deep-learning-formula-nlp
|
|
|
|
embed (Model[List[Doc], List[Floats2d]]): Embed tokens into context-independent
|
|
word vector representations.
|
|
encode (Model[List[Floats2d], List[Floats2d]]): Encode context into the
|
|
embeddings, using an architecture such as a CNN, BiLSTM or transformer.
|
|
"""
|
|
tok2vec = chain(embed, encode)
|
|
if encode.has_dim("nO"):
|
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
|
tok2vec.set_ref("embed", embed)
|
|
tok2vec.set_ref("encode", encode)
|
|
return tok2vec
|
|
|
|
|
|
@registry.architectures("spacy.MultiHashEmbed.v2")
|
|
def MultiHashEmbed(
|
|
width: int,
|
|
attrs: List[Union[str, int]],
|
|
rows: List[int],
|
|
include_static_vectors: bool,
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct an embedding layer that separately embeds a number of lexical
|
|
attributes using hash embedding, concatenates the results, and passes it
|
|
through a feed-forward subnetwork to build a mixed representation.
|
|
|
|
The features used can be configured with the 'attrs' argument. The suggested
|
|
attributes are NORM, PREFIX, SUFFIX and SHAPE. This lets the model take into
|
|
account some subword information, without constructing a fully character-based
|
|
representation. If pretrained vectors are available, they can be included in
|
|
the representation as well, with the vectors table will be kept static
|
|
(i.e. it's not updated).
|
|
|
|
The `width` parameter specifies the output width of the layer and the widths
|
|
of all embedding tables. If static vectors are included, a learned linear
|
|
layer is used to map the vectors to the specified width before concatenating
|
|
it with the other embedding outputs. A single Maxout layer is then used to
|
|
reduce the concatenated vectors to the final width.
|
|
|
|
The `rows` parameter controls the number of rows used by the `HashEmbed`
|
|
tables. The HashEmbed layer needs surprisingly few rows, due to its use of
|
|
the hashing trick. Generally between 2000 and 10000 rows is sufficient,
|
|
even for very large vocabularies. A number of rows must be specified for each
|
|
table, so the `rows` list must be of the same length as the `attrs` parameter.
|
|
|
|
width (int): The output width. Also used as the width of the embedding tables.
|
|
Recommended values are between 64 and 300.
|
|
attrs (list of attr IDs): The token attributes to embed. A separate
|
|
embedding table will be constructed for each attribute.
|
|
rows (List[int]): The number of rows in the embedding tables. Must have the
|
|
same length as attrs.
|
|
include_static_vectors (bool): Whether to also use static word vectors.
|
|
Requires a vectors table to be loaded in the Doc objects' vocab.
|
|
"""
|
|
if len(rows) != len(attrs):
|
|
raise ValueError(f"Mismatched lengths: {len(rows)} vs {len(attrs)}")
|
|
seed = 7
|
|
|
|
def make_hash_embed(index):
|
|
nonlocal seed
|
|
seed += 1
|
|
return HashEmbed(width, rows[index], column=index, seed=seed, dropout=0.0)
|
|
|
|
embeddings = [make_hash_embed(i) for i in range(len(attrs))]
|
|
concat_size = width * (len(embeddings) + include_static_vectors)
|
|
max_out: Model[Ragged, Ragged] = with_array(
|
|
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True) # type: ignore
|
|
)
|
|
if include_static_vectors:
|
|
feature_extractor: Model[List[Doc], Ragged] = chain(
|
|
FeatureExtractor(attrs),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(concatenate(*embeddings)),
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
feature_extractor,
|
|
StaticVectors(width, dropout=0.0),
|
|
),
|
|
max_out,
|
|
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
|
)
|
|
else:
|
|
model = chain(
|
|
FeatureExtractor(list(attrs)),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(concatenate(*embeddings)),
|
|
max_out,
|
|
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
|
)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.CharacterEmbed.v2")
|
|
def CharacterEmbed(
|
|
width: int,
|
|
rows: int,
|
|
nM: int,
|
|
nC: int,
|
|
include_static_vectors: bool,
|
|
feature: Union[int, str] = "LOWER",
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct an embedded representation based on character embeddings, using
|
|
a feed-forward network. A fixed number of UTF-8 byte characters are used for
|
|
each word, taken from the beginning and end of the word equally. Padding is
|
|
used in the centre for words that are too short.
|
|
|
|
For instance, let's say nC=4, and the word is "jumping". The characters
|
|
used will be jung (two from the start, two from the end). If we had nC=8,
|
|
the characters would be "jumpping": 4 from the start, 4 from the end. This
|
|
ensures that the final character is always in the last position, instead
|
|
of being in an arbitrary position depending on the word length.
|
|
|
|
The characters are embedded in a embedding table with a given number of rows,
|
|
and the vectors concatenated. A hash-embedded vector of the LOWER of the word is
|
|
also concatenated on, and the result is then passed through a feed-forward
|
|
network to construct a single vector to represent the information.
|
|
|
|
feature (int or str): An attribute to embed, to concatenate with the characters.
|
|
width (int): The width of the output vector and the feature embedding.
|
|
rows (int): The number of rows in the LOWER hash embedding table.
|
|
nM (int): The dimensionality of the character embeddings. Recommended values
|
|
are between 16 and 64.
|
|
nC (int): The number of UTF-8 bytes to embed per word. Recommended values
|
|
are between 3 and 8, although it may depend on the length of words in the
|
|
language.
|
|
include_static_vectors (bool): Whether to also use static word vectors.
|
|
Requires a vectors table to be loaded in the Doc objects' vocab.
|
|
"""
|
|
feature = intify_attr(feature)
|
|
if feature is None:
|
|
raise ValueError(Errors.E911.format(feat=feature))
|
|
char_embed = chain(
|
|
_character_embed.CharacterEmbed(nM=nM, nC=nC),
|
|
cast(Model[List[Floats2d], Ragged], list2ragged()),
|
|
)
|
|
feature_extractor: Model[List[Doc], Ragged] = chain(
|
|
FeatureExtractor([feature]),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore
|
|
)
|
|
max_out: Model[Ragged, Ragged]
|
|
if include_static_vectors:
|
|
max_out = with_array(
|
|
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0) # type: ignore
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
char_embed,
|
|
feature_extractor,
|
|
StaticVectors(width, dropout=0.0),
|
|
),
|
|
max_out,
|
|
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
|
)
|
|
else:
|
|
max_out = with_array(
|
|
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0) # type: ignore
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
char_embed,
|
|
feature_extractor,
|
|
),
|
|
max_out,
|
|
cast(Model[Ragged, List[Floats2d]], ragged2list()),
|
|
)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.MaxoutWindowEncoder.v2")
|
|
def MaxoutWindowEncoder(
|
|
width: int, window_size: int, maxout_pieces: int, depth: int
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using convolutions with maxout activation, layer
|
|
normalization and residual connections.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
window_size (int): The number of words to concatenate around each token
|
|
to construct the convolution. Recommended value is 1.
|
|
maxout_pieces (int): The number of maxout pieces to use. Recommended
|
|
values are 2 or 3.
|
|
depth (int): The number of convolutional layers. Recommended value is 4.
|
|
"""
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Maxout(
|
|
nO=width,
|
|
nI=width * ((window_size * 2) + 1),
|
|
nP=maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
)
|
|
model = clone(residual(cnn), depth) # type: ignore[arg-type]
|
|
model.set_dim("nO", width)
|
|
receptive_field = window_size * depth
|
|
return with_array(model, pad=receptive_field) # type: ignore[arg-type]
|
|
|
|
|
|
@registry.architectures("spacy.MishWindowEncoder.v2")
|
|
def MishWindowEncoder(
|
|
width: int, window_size: int, depth: int
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using convolutions with mish activation, layer
|
|
normalization and residual connections.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
window_size (int): The number of words to concatenate around each token
|
|
to construct the convolution. Recommended value is 1.
|
|
depth (int): The number of convolutional layers. Recommended value is 4.
|
|
"""
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
|
|
)
|
|
model = clone(residual(cnn), depth) # type: ignore[arg-type]
|
|
model.set_dim("nO", width)
|
|
return with_array(model) # type: ignore[arg-type]
|
|
|
|
|
|
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
|
|
def BiLSTMEncoder(
|
|
width: int, depth: int, dropout: float
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using bidirectonal LSTM layers. Requires PyTorch.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
depth (int): The number of recurrent layers.
|
|
dropout (float): Creates a Dropout layer on the outputs of each LSTM layer
|
|
except the last layer. Set to 0 to disable this functionality.
|
|
"""
|
|
if depth == 0:
|
|
return noop()
|
|
return with_padded(PyTorchLSTM(width, width, bi=True, depth=depth, dropout=dropout))
|