spaCy/spacy/tests/parser/test_ner.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

368 lines
12 KiB
Python

import pytest
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.lookups import Lookups
from spacy.syntax.ner import BiluoPushDown
from spacy.gold import Example
from spacy.tokens import Doc
from spacy.vocab import Vocab
from ..util import make_tempdir
TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
]
@pytest.fixture
def vocab():
return Vocab()
@pytest.fixture
def doc(vocab):
return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."])
@pytest.fixture
def entity_annots(doc):
casey = doc[0:1]
ny = doc[3:5]
return [
(casey.start_char, casey.end_char, "PERSON"),
(ny.start_char, ny.end_char, "GPE"),
]
@pytest.fixture
def entity_types(entity_annots):
return sorted(set([label for (s, e, label) in entity_annots]))
@pytest.fixture
def tsys(vocab, entity_types):
actions = BiluoPushDown.get_actions(entity_types=entity_types)
return BiluoPushDown(vocab.strings, actions)
def test_get_oracle_moves(tsys, doc, entity_annots):
example = Example.from_dict(doc, {"entities": entity_annots})
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
example = Example.from_dict(doc, {"entities": entity_annots})
ex_dict = example.to_dict()
for i, tag in enumerate(ex_dict["doc_annotation"]["entities"]):
if tag == "L-!GPE":
ex_dict["doc_annotation"]["entities"][i] = "-"
example = Example.from_dict(doc, ex_dict)
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
def test_get_oracle_moves_negative_entities2(tsys, vocab):
doc = Doc(vocab, words=["A", "B", "C", "D"])
entity_annots = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"]
example = Example.from_dict(doc, {"entities": entity_annots})
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
@pytest.mark.skip(reason="Maybe outdated? Unsure")
def test_get_oracle_moves_negative_O(tsys, vocab):
doc = Doc(vocab, words=["A", "B", "C", "D"])
entity_annots = ["O", "!O", "O", "!O"]
example = Example.from_dict(doc, {"entities": entity_annots})
act_classes = tsys.get_oracle_sequence(example)
names = [tsys.get_class_name(act) for act in act_classes]
assert names
# We can't easily represent this on a Doc object. Not sure what the best solution
# would be, but I don't think it's an important use case?
@pytest.mark.skip(reason="No longer supported")
def test_oracle_moves_missing_B(en_vocab):
words = ["B", "52", "Bomber"]
biluo_tags = [None, None, "L-PRODUCT"]
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"words": words, "entities": biluo_tags})
moves = BiluoPushDown(en_vocab.strings)
move_types = ("M", "B", "I", "L", "U", "O")
for tag in biluo_tags:
if tag is None:
continue
elif tag == "O":
moves.add_action(move_types.index("O"), "")
else:
action, label = tag.split("-")
moves.add_action(move_types.index("B"), label)
moves.add_action(move_types.index("I"), label)
moves.add_action(move_types.index("L"), label)
moves.add_action(move_types.index("U"), label)
moves.get_oracle_sequence(example)
# We can't easily represent this on a Doc object. Not sure what the best solution
# would be, but I don't think it's an important use case?
@pytest.mark.skip(reason="No longer supported")
def test_oracle_moves_whitespace(en_vocab):
words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]
doc = Doc(en_vocab, words=words)
example = Example.from_dict(doc, {"entities": biluo_tags})
moves = BiluoPushDown(en_vocab.strings)
move_types = ("M", "B", "I", "L", "U", "O")
for tag in biluo_tags:
if tag is None:
continue
elif tag == "O":
moves.add_action(move_types.index("O"), "")
else:
action, label = tag.split("-")
moves.add_action(move_types.index(action), label)
moves.get_oracle_sequence(example)
def test_accept_blocked_token():
"""Test succesful blocking of tokens to be in an entity."""
# 1. test normal behaviour
nlp1 = English()
doc1 = nlp1("I live in New York")
config = {
"learn_tokens": False,
"min_action_freq": 30,
}
ner1 = nlp1.create_pipe("ner", config=config)
assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""]
assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""]
# Add the OUT action
ner1.moves.add_action(5, "")
ner1.add_label("GPE")
# Get into the state just before "New"
state1 = ner1.moves.init_batch([doc1])[0]
ner1.moves.apply_transition(state1, "O")
ner1.moves.apply_transition(state1, "O")
ner1.moves.apply_transition(state1, "O")
# Check that B-GPE is valid.
assert ner1.moves.is_valid(state1, "B-GPE")
# 2. test blocking behaviour
nlp2 = English()
doc2 = nlp2("I live in New York")
config = {
"learn_tokens": False,
"min_action_freq": 30,
}
ner2 = nlp2.create_pipe("ner", config=config)
# set "New York" to a blocked entity
doc2.ents = [(0, 3, 5)]
assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"]
assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""]
# Check that B-GPE is now invalid.
ner2.moves.add_action(4, "")
ner2.moves.add_action(5, "")
ner2.add_label("GPE")
state2 = ner2.moves.init_batch([doc2])[0]
ner2.moves.apply_transition(state2, "O")
ner2.moves.apply_transition(state2, "O")
ner2.moves.apply_transition(state2, "O")
# we can only use U- for "New"
assert not ner2.moves.is_valid(state2, "B-GPE")
assert ner2.moves.is_valid(state2, "U-")
ner2.moves.apply_transition(state2, "U-")
# we can only use U- for "York"
assert not ner2.moves.is_valid(state2, "B-GPE")
assert ner2.moves.is_valid(state2, "U-")
def test_train_empty():
"""Test that training an empty text does not throw errors."""
train_data = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("", {"entities": []}),
]
nlp = English()
train_examples = []
for t in train_data:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
ner = nlp.add_pipe("ner", last=True)
ner.add_label("PERSON")
nlp.begin_training()
for itn in range(2):
losses = {}
batches = util.minibatch(train_examples)
for batch in batches:
nlp.update(batch, losses=losses)
def test_overwrite_token():
nlp = English()
nlp.add_pipe("ner")
nlp.begin_training()
# The untrained NER will predict O for each token
doc = nlp("I live in New York")
assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
assert [token.ent_type_ for token in doc] == ["", "", "", "", ""]
# Check that a new ner can overwrite O
config = {
"learn_tokens": False,
"min_action_freq": 30,
}
ner2 = nlp.create_pipe("ner", config=config)
ner2.moves.add_action(5, "")
ner2.add_label("GPE")
state = ner2.moves.init_batch([doc])[0]
assert ner2.moves.is_valid(state, "B-GPE")
assert ner2.moves.is_valid(state, "U-GPE")
ner2.moves.apply_transition(state, "B-GPE")
assert ner2.moves.is_valid(state, "I-GPE")
assert ner2.moves.is_valid(state, "L-GPE")
def test_empty_ner():
nlp = English()
ner = nlp.add_pipe("ner")
ner.add_label("MY_LABEL")
nlp.begin_training()
doc = nlp("John is watching the news about Croatia's elections")
# if this goes wrong, the initialization of the parser's upper layer is probably broken
result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"]
assert [token.ent_iob_ for token in doc] == result
def test_ruler_before_ner():
""" Test that an NER works after an entity_ruler: the second can add annotations """
nlp = English()
# 1 : Entity Ruler - should set "this" to B and everything else to empty
patterns = [{"label": "THING", "pattern": "This"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
# 2: untrained NER - should set everything else to O
untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL")
nlp.begin_training()
doc = nlp("This is Antti Korhonen speaking in Finland")
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
expected_types = ["THING", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
def test_ner_before_ruler():
""" Test that an entity_ruler works after an NER: the second can overwrite O annotations """
nlp = English()
# 1: untrained NER - should set everything to O
untrained_ner = nlp.add_pipe("ner", name="uner")
untrained_ner.add_label("MY_LABEL")
nlp.begin_training()
# 2 : Entity Ruler - should set "this" to B and keep everything else O
patterns = [{"label": "THING", "pattern": "This"}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp("This is Antti Korhonen speaking in Finland")
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
expected_types = ["THING", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
def test_block_ner():
""" Test functionality for blocking tokens so they can't be in a named entity """
# block "Antti L Korhonen" from being a named entity
nlp = English()
nlp.add_pipe("blocker", config={"start": 2, "end": 5})
untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL")
nlp.begin_training()
doc = nlp("This is Antti L Korhonen speaking in Finland")
expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
expected_types = ["", "", "", "", "", "", "", ""]
assert [token.ent_iob_ for token in doc] == expected_iobs
assert [token.ent_type_ for token in doc] == expected_types
def test_overfitting_IO():
# Simple test to try and quickly overfit the NER component - ensuring the ML models work correctly
nlp = English()
ner = nlp.add_pipe("ner")
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"):
ner.add_label(ent[2])
optimizer = nlp.begin_training()
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["ner"] < 0.00001
# test the trained model
test_text = "I like London."
doc = nlp(test_text)
ents = doc.ents
assert len(ents) == 1
assert ents[0].text == "London"
assert ents[0].label_ == "LOC"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
ents2 = doc2.ents
assert len(ents2) == 1
assert ents2[0].text == "London"
assert ents2[0].label_ == "LOC"
def test_ner_warns_no_lookups():
nlp = Language()
nlp.vocab.lookups = Lookups()
assert not len(nlp.vocab.lookups)
nlp.add_pipe("ner")
with pytest.warns(UserWarning):
nlp.begin_training()
nlp.vocab.lookups.add_table("lexeme_norm")
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
with pytest.warns(None) as record:
nlp.begin_training()
assert not record.list
@Language.factory("blocker")
class BlockerComponent1:
def __init__(self, nlp, start, end, name="my_blocker"):
self.start = start
self.end = end
self.name = name
def __call__(self, doc):
doc.ents = [(0, self.start, self.end)]
return doc