mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* set 4.38.0 to minimal version with color bug fix * set imports back to proper place * add upper range for tqdm
		
			
				
	
	
		
			106 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Visualize spaCy word vectors in Tensorboard.
 | |
| 
 | |
| Adapted from: https://gist.github.com/BrikerMan/7bd4e4bd0a00ac9076986148afc06507
 | |
| """
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| from os import path
 | |
| 
 | |
| import tqdm
 | |
| import math
 | |
| import numpy
 | |
| import plac
 | |
| import spacy
 | |
| import tensorflow as tf
 | |
| from tensorflow.contrib.tensorboard.plugins.projector import (
 | |
|     visualize_embeddings,
 | |
|     ProjectorConfig,
 | |
| )
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str),
 | |
|     out_loc=(
 | |
|         "Path to output folder for tensorboard session data",
 | |
|         "positional",
 | |
|         None,
 | |
|         str,
 | |
|     ),
 | |
|     name=(
 | |
|         "Human readable name for tsv file and vectors tensor",
 | |
|         "positional",
 | |
|         None,
 | |
|         str,
 | |
|     ),
 | |
| )
 | |
| def main(vectors_loc, out_loc, name="spaCy_vectors"):
 | |
|     meta_file = "{}.tsv".format(name)
 | |
|     out_meta_file = path.join(out_loc, meta_file)
 | |
| 
 | |
|     print("Loading spaCy vectors model: {}".format(vectors_loc))
 | |
|     model = spacy.load(vectors_loc)
 | |
|     print("Finding lexemes with vectors attached: {}".format(vectors_loc))
 | |
|     strings_stream = tqdm.tqdm(
 | |
|         model.vocab.strings, total=len(model.vocab.strings), leave=False
 | |
|     )
 | |
|     queries = [w for w in strings_stream if model.vocab.has_vector(w)]
 | |
|     vector_count = len(queries)
 | |
| 
 | |
|     print(
 | |
|         "Building Tensorboard Projector metadata for ({}) vectors: {}".format(
 | |
|             vector_count, out_meta_file
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     # Store vector data in a tensorflow variable
 | |
|     tf_vectors_variable = numpy.zeros((vector_count, model.vocab.vectors.shape[1]))
 | |
| 
 | |
|     # Write a tab-separated file that contains information about the vectors for visualization
 | |
|     #
 | |
|     # Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata
 | |
|     with open(out_meta_file, "wb") as file_metadata:
 | |
|         # Define columns in the first row
 | |
|         file_metadata.write("Text\tFrequency\n".encode("utf-8"))
 | |
|         # Write out a row for each vector that we add to the tensorflow variable we created
 | |
|         vec_index = 0
 | |
|         for text in tqdm.tqdm(queries, total=len(queries), leave=False):
 | |
|             # https://github.com/tensorflow/tensorflow/issues/9094
 | |
|             text = "<Space>" if text.lstrip() == "" else text
 | |
|             lex = model.vocab[text]
 | |
| 
 | |
|             # Store vector data and metadata
 | |
|             tf_vectors_variable[vec_index] = model.vocab.get_vector(text)
 | |
|             file_metadata.write(
 | |
|                 "{}\t{}\n".format(text, math.exp(lex.prob) * vector_count).encode(
 | |
|                     "utf-8"
 | |
|                 )
 | |
|             )
 | |
|             vec_index += 1
 | |
| 
 | |
|     print("Running Tensorflow Session...")
 | |
|     sess = tf.InteractiveSession()
 | |
|     tf.Variable(tf_vectors_variable, trainable=False, name=name)
 | |
|     tf.global_variables_initializer().run()
 | |
|     saver = tf.train.Saver()
 | |
|     writer = tf.summary.FileWriter(out_loc, sess.graph)
 | |
| 
 | |
|     # Link the embeddings into the config
 | |
|     config = ProjectorConfig()
 | |
|     embed = config.embeddings.add()
 | |
|     embed.tensor_name = name
 | |
|     embed.metadata_path = meta_file
 | |
| 
 | |
|     # Tell the projector about the configured embeddings and metadata file
 | |
|     visualize_embeddings(writer, config)
 | |
| 
 | |
|     # Save session and print run command to the output
 | |
|     print("Saving Tensorboard Session...")
 | |
|     saver.save(sess, path.join(out_loc, "{}.ckpt".format(name)))
 | |
|     print("Done. Run `tensorboard --logdir={0}` to view in Tensorboard".format(out_loc))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 |