mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 18:24:08 +03:00
5861308910
Handle tokenizer special cases more generally by using the Matcher internally to match special cases after the affix/token_match tokenization is complete. Instead of only matching special cases while processing balanced or nearly balanced prefixes and suffixes, this recognizes special cases in a wider range of contexts: * Allows arbitrary numbers of prefixes/affixes around special cases * Allows special cases separated by infixes Existing tests/settings that couldn't be preserved as before: * The emoticon '")' is no longer a supported special case * The emoticon ':)' in "example:)" is a false positive again When merged with #4258 (or the relevant cache bugfix), the affix and token_match properties should be modified to flush and reload all special cases to use the updated internal tokenization with the Matcher.
506 lines
21 KiB
Cython
506 lines
21 KiB
Cython
# cython: embedsignature=True
|
|
# cython: profile=True
|
|
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
from cython.operator cimport dereference as deref
|
|
from cython.operator cimport preincrement as preinc
|
|
from cymem.cymem cimport Pool
|
|
from preshed.maps cimport PreshMap
|
|
cimport cython
|
|
|
|
from collections import OrderedDict
|
|
import re
|
|
|
|
from .tokens.doc cimport Doc
|
|
from .strings cimport hash_string
|
|
from .compat import unescape_unicode
|
|
|
|
from .errors import Errors, Warnings, deprecation_warning
|
|
from . import util
|
|
|
|
from .attrs import intify_attrs
|
|
from .matcher import Matcher
|
|
from .symbols import ORTH
|
|
|
|
cdef class Tokenizer:
|
|
"""Segment text, and create Doc objects with the discovered segment
|
|
boundaries.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer
|
|
"""
|
|
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
|
|
suffix_search=None, infix_finditer=None, token_match=None):
|
|
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
|
|
|
|
vocab (Vocab): A storage container for lexical types.
|
|
rules (dict): Exceptions and special-cases for the tokenizer.
|
|
prefix_search (callable): A function matching the signature of
|
|
`re.compile(string).search` to match prefixes.
|
|
suffix_search (callable): A function matching the signature of
|
|
`re.compile(string).search` to match suffixes.
|
|
`infix_finditer` (callable): A function matching the signature of
|
|
`re.compile(string).finditer` to find infixes.
|
|
token_match (callable): A boolean function matching strings to be
|
|
recognised as tokens.
|
|
RETURNS (Tokenizer): The newly constructed object.
|
|
|
|
EXAMPLE:
|
|
>>> tokenizer = Tokenizer(nlp.vocab)
|
|
>>> tokenizer = English().Defaults.create_tokenizer(nlp)
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#init
|
|
"""
|
|
self.mem = Pool()
|
|
self._cache = PreshMap()
|
|
self._specials = PreshMap()
|
|
self.token_match = token_match
|
|
self.prefix_search = prefix_search
|
|
self.suffix_search = suffix_search
|
|
self.infix_finditer = infix_finditer
|
|
self.vocab = vocab
|
|
self._rules = {}
|
|
self._special_matcher = Matcher(self.vocab)
|
|
self._load_special_cases(rules)
|
|
|
|
def __reduce__(self):
|
|
args = (self.vocab,
|
|
self._rules,
|
|
self.prefix_search,
|
|
self.suffix_search,
|
|
self.infix_finditer,
|
|
self.token_match)
|
|
return (self.__class__, args, None, None)
|
|
|
|
cpdef Doc tokens_from_list(self, list strings):
|
|
deprecation_warning(Warnings.W002)
|
|
return Doc(self.vocab, words=strings)
|
|
|
|
def __call__(self, unicode string):
|
|
"""Tokenize a string.
|
|
|
|
string (unicode): The string to tokenize.
|
|
RETURNS (Doc): A container for linguistic annotations.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#call
|
|
"""
|
|
doc = self._tokenize_affixes(string)
|
|
self._apply_special_cases(doc)
|
|
return doc
|
|
|
|
@cython.boundscheck(False)
|
|
cdef Doc _tokenize_affixes(self, unicode string):
|
|
"""Tokenize according to affix and token_match settings.
|
|
|
|
string (unicode): The string to tokenize.
|
|
RETURNS (Doc): A container for linguistic annotations.
|
|
"""
|
|
if len(string) >= (2 ** 30):
|
|
raise ValueError(Errors.E025.format(length=len(string)))
|
|
cdef int length = len(string)
|
|
cdef Doc doc = Doc(self.vocab)
|
|
if length == 0:
|
|
return doc
|
|
cdef int i = 0
|
|
cdef int start = 0
|
|
cdef bint cache_hit
|
|
cdef bint in_ws = string[0].isspace()
|
|
cdef unicode span
|
|
# The task here is much like string.split, but not quite
|
|
# We find spans of whitespace and non-space characters, and ignore
|
|
# spans that are exactly ' '. So, our sequences will all be separated
|
|
# by either ' ' or nothing.
|
|
for uc in string:
|
|
if uc.isspace() != in_ws:
|
|
if start < i:
|
|
# When we want to make this fast, get the data buffer once
|
|
# with PyUnicode_AS_DATA, and then maintain a start_byte
|
|
# and end_byte, so we can call hash64 directly. That way
|
|
# we don't have to create the slice when we hit the cache.
|
|
span = string[start:i]
|
|
key = hash_string(span)
|
|
cache_hit = self._try_cache(key, doc)
|
|
if not cache_hit:
|
|
self._tokenize(doc, span, key)
|
|
if uc == ' ':
|
|
doc.c[doc.length - 1].spacy = True
|
|
start = i + 1
|
|
else:
|
|
start = i
|
|
in_ws = not in_ws
|
|
i += 1
|
|
if start < i:
|
|
span = string[start:]
|
|
key = hash_string(span)
|
|
cache_hit = self._try_cache(key, doc)
|
|
if not cache_hit:
|
|
self._tokenize(doc, span, key)
|
|
doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
|
|
return doc
|
|
|
|
def pipe(self, texts, batch_size=1000, n_threads=-1):
|
|
"""Tokenize a stream of texts.
|
|
|
|
texts: A sequence of unicode texts.
|
|
batch_size (int): Number of texts to accumulate in an internal buffer.
|
|
Defaults to 1000.
|
|
YIELDS (Doc): A sequence of Doc objects, in order.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#pipe
|
|
"""
|
|
if n_threads != -1:
|
|
deprecation_warning(Warnings.W016)
|
|
for text in texts:
|
|
yield self(text)
|
|
|
|
def _reset_cache(self, keys):
|
|
for k in keys:
|
|
del self._cache[k]
|
|
|
|
cdef int _apply_special_cases(self, Doc doc):
|
|
"""Retokenize doc according to special cases.
|
|
|
|
doc (Doc): Document.
|
|
"""
|
|
cdef int i
|
|
# Find all special cases and filter overlapping matches
|
|
spans = [doc[match[1]:match[2]] for match in self._special_matcher(doc)]
|
|
spans = util.filter_spans(spans)
|
|
spans = [(span.text, span.start, span.end) for span in spans]
|
|
# Modify tokenization according to filtered special cases
|
|
cdef int offset = 0
|
|
cdef int span_length_diff
|
|
cdef int idx_offset
|
|
for span in spans:
|
|
# Allocate more memory for doc if needed
|
|
span_length_diff = len(self._rules[span[0]]) - (span[2] - span[1])
|
|
while doc.length + offset + span_length_diff >= doc.max_length:
|
|
doc._realloc(doc.length * 2)
|
|
# Find special case entries in cache
|
|
cached = <_Cached*>self._specials.get(hash_string(span[0]))
|
|
if cached == NULL:
|
|
continue
|
|
# Shift original tokens...
|
|
# ...from span position to end if new span is shorter
|
|
if span_length_diff < 0:
|
|
for i in range(span[2] + offset, doc.length + offset):
|
|
doc.c[span_length_diff + i] = doc.c[i]
|
|
# ...from end to span position if new span is longer
|
|
elif span_length_diff > 0:
|
|
for i in range(doc.length + offset - 1, span[2] + offset - 1, -1):
|
|
doc.c[span_length_diff + i] = doc.c[i]
|
|
# Copy special case tokens into doc and adjust token and character
|
|
# offsets
|
|
idx_offset = 0
|
|
for i in range(cached.length):
|
|
orig_idx = doc.c[span[1] + offset + i].idx
|
|
doc.c[span[1] + offset + i] = cached.data.tokens[i]
|
|
doc.c[span[1] + offset + i].idx = orig_idx + idx_offset
|
|
idx_offset += cached.data.tokens[i].lex.length
|
|
# Token offset for special case spans
|
|
offset += span_length_diff
|
|
doc.length += offset
|
|
return True
|
|
|
|
cdef int _try_cache(self, hash_t key, Doc tokens) except -1:
|
|
cached = <_Cached*>self._cache.get(key)
|
|
if cached == NULL:
|
|
return False
|
|
cdef int i
|
|
if cached.is_lex:
|
|
for i in range(cached.length):
|
|
tokens.push_back(cached.data.lexemes[i], False)
|
|
else:
|
|
for i in range(cached.length):
|
|
tokens.push_back(&cached.data.tokens[i], False)
|
|
return True
|
|
|
|
cdef int _tokenize(self, Doc tokens, unicode span, hash_t orig_key) except -1:
|
|
cdef vector[LexemeC*] prefixes
|
|
cdef vector[LexemeC*] suffixes
|
|
cdef int orig_size
|
|
orig_size = tokens.length
|
|
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes)
|
|
self._attach_tokens(tokens, span, &prefixes, &suffixes)
|
|
self._save_cached(&tokens.c[orig_size], orig_key,
|
|
tokens.length - orig_size)
|
|
|
|
cdef unicode _split_affixes(self, Pool mem, unicode string,
|
|
vector[const LexemeC*] *prefixes,
|
|
vector[const LexemeC*] *suffixes):
|
|
cdef size_t i
|
|
cdef unicode prefix
|
|
cdef unicode suffix
|
|
cdef unicode minus_pre
|
|
cdef unicode minus_suf
|
|
cdef size_t last_size = 0
|
|
while string and len(string) != last_size:
|
|
if self.token_match and self.token_match(string):
|
|
break
|
|
last_size = len(string)
|
|
pre_len = self.find_prefix(string)
|
|
if pre_len != 0:
|
|
prefix = string[:pre_len]
|
|
minus_pre = string[pre_len:]
|
|
suf_len = self.find_suffix(string)
|
|
if suf_len != 0:
|
|
suffix = string[-suf_len:]
|
|
minus_suf = string[:-suf_len]
|
|
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
|
|
string = string[pre_len:-suf_len]
|
|
prefixes.push_back(self.vocab.get(mem, prefix))
|
|
suffixes.push_back(self.vocab.get(mem, suffix))
|
|
elif pre_len:
|
|
string = minus_pre
|
|
prefixes.push_back(self.vocab.get(mem, prefix))
|
|
elif suf_len:
|
|
string = minus_suf
|
|
suffixes.push_back(self.vocab.get(mem, suffix))
|
|
return string
|
|
|
|
cdef int _attach_tokens(self, Doc tokens, unicode string,
|
|
vector[const LexemeC*] *prefixes,
|
|
vector[const LexemeC*] *suffixes) except -1:
|
|
cdef bint cache_hit
|
|
cdef int split, end
|
|
cdef const LexemeC* const* lexemes
|
|
cdef const LexemeC* lexeme
|
|
cdef unicode span
|
|
cdef int i
|
|
if prefixes.size():
|
|
for i in range(prefixes.size()):
|
|
tokens.push_back(prefixes[0][i], False)
|
|
if string:
|
|
cache_hit = self._try_cache(hash_string(string), tokens)
|
|
if cache_hit:
|
|
pass
|
|
elif self.token_match and self.token_match(string):
|
|
# We're always saying 'no' to spaces here -- the caller will
|
|
# fix up the outermost one, with reference to the original.
|
|
# See Issue #859
|
|
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
|
else:
|
|
matches = self.find_infix(string)
|
|
if not matches:
|
|
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
|
else:
|
|
# Let's say we have dyn-o-mite-dave - the regex finds the
|
|
# start and end positions of the hyphens
|
|
start = 0
|
|
start_before_infixes = start
|
|
for match in matches:
|
|
infix_start = match.start()
|
|
infix_end = match.end()
|
|
|
|
if infix_start == start_before_infixes:
|
|
continue
|
|
|
|
if infix_start != start:
|
|
span = string[start:infix_start]
|
|
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
|
|
|
if infix_start != infix_end:
|
|
# If infix_start != infix_end, it means the infix
|
|
# token is non-empty. Empty infix tokens are useful
|
|
# for tokenization in some languages (see
|
|
# https://github.com/explosion/spaCy/issues/768)
|
|
infix_span = string[infix_start:infix_end]
|
|
tokens.push_back(self.vocab.get(tokens.mem, infix_span), False)
|
|
start = infix_end
|
|
span = string[start:]
|
|
if span:
|
|
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
|
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
|
|
while it != suffixes.rend():
|
|
lexeme = deref(it)
|
|
preinc(it)
|
|
tokens.push_back(lexeme, False)
|
|
|
|
cdef int _save_cached(self, const TokenC* tokens, hash_t key,
|
|
int n) except -1:
|
|
cdef int i
|
|
for i in range(n):
|
|
if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL:
|
|
return 0
|
|
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
|
|
cached.length = n
|
|
cached.is_lex = True
|
|
lexemes = <const LexemeC**>self.mem.alloc(n, sizeof(LexemeC**))
|
|
for i in range(n):
|
|
lexemes[i] = tokens[i].lex
|
|
cached.data.lexemes = <const LexemeC* const*>lexemes
|
|
self._cache.set(key, cached)
|
|
|
|
def find_infix(self, unicode string):
|
|
"""Find internal split points of the string, such as hyphens.
|
|
|
|
string (unicode): The string to segment.
|
|
RETURNS (list): A list of `re.MatchObject` objects that have `.start()`
|
|
and `.end()` methods, denoting the placement of internal segment
|
|
separators, e.g. hyphens.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_infix
|
|
"""
|
|
if self.infix_finditer is None:
|
|
return 0
|
|
return list(self.infix_finditer(string))
|
|
|
|
def find_prefix(self, unicode string):
|
|
"""Find the length of a prefix that should be segmented from the
|
|
string, or None if no prefix rules match.
|
|
|
|
string (unicode): The string to segment.
|
|
RETURNS (int): The length of the prefix if present, otherwise `None`.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_prefix
|
|
"""
|
|
if self.prefix_search is None:
|
|
return 0
|
|
match = self.prefix_search(string)
|
|
return (match.end() - match.start()) if match is not None else 0
|
|
|
|
def find_suffix(self, unicode string):
|
|
"""Find the length of a suffix that should be segmented from the
|
|
string, or None if no suffix rules match.
|
|
|
|
string (unicode): The string to segment.
|
|
Returns (int): The length of the suffix if present, otherwise `None`.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_suffix
|
|
"""
|
|
if self.suffix_search is None:
|
|
return 0
|
|
match = self.suffix_search(string)
|
|
return (match.end() - match.start()) if match is not None else 0
|
|
|
|
def _load_special_cases(self, special_cases):
|
|
"""Add special-case tokenization rules."""
|
|
if special_cases is not None:
|
|
for chunk, substrings in sorted(special_cases.items()):
|
|
self._validate_special_case(chunk, substrings)
|
|
self.add_special_case(chunk, substrings)
|
|
|
|
def _validate_special_case(self, chunk, substrings):
|
|
"""Check whether the `ORTH` fields match the string.
|
|
|
|
string (unicode): The string to specially tokenize.
|
|
substrings (iterable): A sequence of dicts, where each dict describes
|
|
a token and its attributes.
|
|
"""
|
|
attrs = [intify_attrs(spec, _do_deprecated=True) for spec in substrings]
|
|
orth = "".join([spec[ORTH] for spec in attrs])
|
|
if chunk != orth:
|
|
raise ValueError(Errors.E158.format(chunk=chunk, orth=orth, token_attrs=substrings))
|
|
|
|
def add_special_case(self, unicode string, substrings):
|
|
"""Add a special-case tokenization rule.
|
|
|
|
string (unicode): The string to specially tokenize.
|
|
substrings (iterable): A sequence of dicts, where each dict describes
|
|
a token and its attributes. The `ORTH` fields of the attributes
|
|
must exactly match the string when they are concatenated.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#add_special_case
|
|
"""
|
|
self._validate_special_case(string, substrings)
|
|
substrings = list(substrings)
|
|
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
|
|
cached.length = len(substrings)
|
|
cached.is_lex = False
|
|
cached.data.tokens = self.vocab.make_fused_token(substrings)
|
|
key = hash_string(string)
|
|
self._specials.set(key, cached)
|
|
self._rules[string] = substrings
|
|
self._special_matcher.add(string, None, [{ORTH: token.text} for token in self._tokenize_affixes(string)])
|
|
|
|
def to_disk(self, path, **kwargs):
|
|
"""Save the current state to a directory.
|
|
|
|
path (unicode or Path): A path to a directory, which will be created if
|
|
it doesn't exist.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#to_disk
|
|
"""
|
|
with path.open("wb") as file_:
|
|
file_.write(self.to_bytes(**kwargs))
|
|
|
|
def from_disk(self, path, **kwargs):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it.
|
|
|
|
path (unicode or Path): A path to a directory.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (Tokenizer): The modified `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#from_disk
|
|
"""
|
|
with path.open("rb") as file_:
|
|
bytes_data = file_.read()
|
|
self.from_bytes(bytes_data, **kwargs)
|
|
return self
|
|
|
|
def to_bytes(self, exclude=tuple(), **kwargs):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#to_bytes
|
|
"""
|
|
serializers = OrderedDict((
|
|
("vocab", lambda: self.vocab.to_bytes()),
|
|
("prefix_search", lambda: _get_regex_pattern(self.prefix_search)),
|
|
("suffix_search", lambda: _get_regex_pattern(self.suffix_search)),
|
|
("infix_finditer", lambda: _get_regex_pattern(self.infix_finditer)),
|
|
("token_match", lambda: _get_regex_pattern(self.token_match)),
|
|
("exceptions", lambda: OrderedDict(sorted(self._rules.items())))
|
|
))
|
|
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
|
|
"""Load state from a binary string.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (Tokenizer): The `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#from_bytes
|
|
"""
|
|
data = OrderedDict()
|
|
deserializers = OrderedDict((
|
|
("vocab", lambda b: self.vocab.from_bytes(b)),
|
|
("prefix_search", lambda b: data.setdefault("prefix_search", b)),
|
|
("suffix_search", lambda b: data.setdefault("suffix_search", b)),
|
|
("infix_finditer", lambda b: data.setdefault("infix_finditer", b)),
|
|
("token_match", lambda b: data.setdefault("token_match", b)),
|
|
("exceptions", lambda b: data.setdefault("rules", b))
|
|
))
|
|
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
|
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
|
for key in ["prefix_search", "suffix_search", "infix_finditer"]:
|
|
if key in data:
|
|
data[key] = unescape_unicode(data[key])
|
|
if data.get("prefix_search"):
|
|
self.prefix_search = re.compile(data["prefix_search"]).search
|
|
if data.get("suffix_search"):
|
|
self.suffix_search = re.compile(data["suffix_search"]).search
|
|
if data.get("infix_finditer"):
|
|
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
|
|
if data.get("token_match"):
|
|
self.token_match = re.compile(data["token_match"]).match
|
|
if data.get("rules"):
|
|
# make sure to hard reset the cache to remove data from the default exceptions
|
|
self._rules = {}
|
|
self._cache = PreshMap()
|
|
for string, substrings in data.get("rules", {}).items():
|
|
self.add_special_case(string, substrings)
|
|
|
|
return self
|
|
|
|
|
|
def _get_regex_pattern(regex):
|
|
"""Get a pattern string for a regex, or None if the pattern is None."""
|
|
return None if regex is None else regex.__self__.pattern
|