mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
8c29268749
* Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
538 lines
21 KiB
Cython
538 lines
21 KiB
Cython
# cython: infer_types=True, cdivision=True, boundscheck=False
|
|
cimport cython.parallel
|
|
cimport numpy as np
|
|
from itertools import islice
|
|
from cpython.ref cimport PyObject, Py_XDECREF
|
|
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
|
|
from libc.math cimport exp
|
|
from libcpp.vector cimport vector
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport calloc, free
|
|
from cymem.cymem cimport Pool
|
|
from thinc.backends.linalg cimport Vec, VecVec
|
|
|
|
from thinc.api import chain, clone, Linear, list2array, NumpyOps, CupyOps, use_ops
|
|
from thinc.api import get_array_module, zero_init, set_dropout_rate
|
|
from itertools import islice
|
|
import srsly
|
|
import numpy.random
|
|
import numpy
|
|
import warnings
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..typedefs cimport weight_t, class_t, hash_t
|
|
from ._parser_model cimport alloc_activations, free_activations
|
|
from ._parser_model cimport predict_states, arg_max_if_valid
|
|
from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
|
|
from ._parser_model cimport get_c_weights, get_c_sizes
|
|
from .stateclass cimport StateClass
|
|
from ._state cimport StateC
|
|
from .transition_system cimport Transition
|
|
from ..gold.example cimport Example
|
|
|
|
from ..util import link_vectors_to_models, create_default_optimizer, registry
|
|
from ..compat import copy_array
|
|
from ..errors import Errors, Warnings
|
|
from .. import util
|
|
from . import nonproj
|
|
|
|
|
|
cdef class Parser:
|
|
"""
|
|
Base class of the DependencyParser and EntityRecognizer.
|
|
"""
|
|
name = 'base_parser'
|
|
|
|
|
|
def __init__(self, Vocab vocab, model, **cfg):
|
|
"""Create a Parser.
|
|
|
|
vocab (Vocab): The vocabulary object. Must be shared with documents
|
|
to be processed. The value is set to the `.vocab` attribute.
|
|
**cfg: Configuration parameters. Set to the `.cfg` attribute.
|
|
If it doesn't include a value for 'moves', a new instance is
|
|
created with `self.TransitionSystem()`. This defines how the
|
|
parse-state is created, updated and evaluated.
|
|
"""
|
|
self.vocab = vocab
|
|
moves = cfg.get("moves", None)
|
|
if moves is None:
|
|
# defined by EntityRecognizer as a BiluoPushDown
|
|
moves = self.TransitionSystem(self.vocab.strings)
|
|
self.moves = moves
|
|
self.model = model
|
|
if self.moves.n_moves != 0:
|
|
self.set_output(self.moves.n_moves)
|
|
self.cfg = cfg
|
|
self._multitasks = []
|
|
for multitask in cfg.get("multitasks", []):
|
|
self.add_multitask_objective(multitask)
|
|
|
|
self._rehearsal_model = None
|
|
|
|
@classmethod
|
|
def from_nlp(cls, nlp, model, **cfg):
|
|
return cls(nlp.vocab, model, **cfg)
|
|
|
|
def __reduce__(self):
|
|
return (Parser, (self.vocab, self.model), (self.moves, self.cfg))
|
|
|
|
def __getstate__(self):
|
|
return (self.moves, self.cfg)
|
|
|
|
def __setstate__(self, state):
|
|
moves, config = state
|
|
self.moves = moves
|
|
self.cfg = config
|
|
|
|
@property
|
|
def move_names(self):
|
|
names = []
|
|
for i in range(self.moves.n_moves):
|
|
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
|
|
# Explicitly removing the internal "U-" token used for blocking entities
|
|
if name != "U-":
|
|
names.append(name)
|
|
return names
|
|
|
|
@property
|
|
def labels(self):
|
|
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
|
|
return class_names
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
'''Return the embedding and convolutional layer of the model.'''
|
|
return self.model.get_ref("tok2vec")
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
# Available for subclasses, e.g. to deprojectivize
|
|
return []
|
|
|
|
def add_label(self, label):
|
|
resized = False
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
resized = True
|
|
if resized:
|
|
self._resize()
|
|
|
|
def _resize(self):
|
|
self.model.attrs["resize_output"](self.model, self.moves.n_moves)
|
|
if self._rehearsal_model not in (True, False, None):
|
|
self._rehearsal_model.attrs["resize_output"](
|
|
self._rehearsal_model, self.moves.n_moves
|
|
)
|
|
|
|
def add_multitask_objective(self, target):
|
|
# Defined in subclasses, to avoid circular import
|
|
raise NotImplementedError
|
|
|
|
def init_multitask_objectives(self, get_examples, pipeline, **cfg):
|
|
'''Setup models for secondary objectives, to benefit from multi-task
|
|
learning. This method is intended to be overridden by subclasses.
|
|
|
|
For instance, the dependency parser can benefit from sharing
|
|
an input representation with a label prediction model. These auxiliary
|
|
models are discarded after training.
|
|
'''
|
|
pass
|
|
|
|
def use_params(self, params):
|
|
# Can't decorate cdef class :(. Workaround.
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def __call__(self, Doc doc):
|
|
"""Apply the parser or entity recognizer, setting the annotations onto
|
|
the `Doc` object.
|
|
|
|
doc (Doc): The document to be processed.
|
|
"""
|
|
states = self.predict([doc])
|
|
self.set_annotations([doc], states, tensors=None)
|
|
return doc
|
|
|
|
def pipe(self, docs, int batch_size=256, int n_threads=-1):
|
|
"""Process a stream of documents.
|
|
|
|
stream: The sequence of documents to process.
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
|
YIELDS (Doc): Documents, in order.
|
|
"""
|
|
cdef Doc doc
|
|
for batch in util.minibatch(docs, size=batch_size):
|
|
batch_in_order = list(batch)
|
|
by_length = sorted(batch, key=lambda doc: len(doc))
|
|
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
|
subbatch = list(subbatch)
|
|
parse_states = self.predict(subbatch)
|
|
self.set_annotations(subbatch, parse_states, tensors=None)
|
|
yield from batch_in_order
|
|
|
|
def predict(self, docs):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
if not any(len(doc) for doc in docs):
|
|
result = self.moves.init_batch(docs)
|
|
self._resize()
|
|
return result
|
|
return self.greedy_parse(docs, drop=0.0)
|
|
|
|
def greedy_parse(self, docs, drop=0.):
|
|
cdef vector[StateC*] states
|
|
cdef StateClass state
|
|
set_dropout_rate(self.model, drop)
|
|
batch = self.moves.init_batch(docs)
|
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
|
# if labels are missing. We therefore have to check whether we need to
|
|
# expand our model output.
|
|
self._resize()
|
|
model = self.model.predict(docs)
|
|
weights = get_c_weights(model)
|
|
for state in batch:
|
|
if not state.is_final():
|
|
states.push_back(state.c)
|
|
sizes = get_c_sizes(model, states.size())
|
|
with nogil:
|
|
self._parseC(&states[0],
|
|
weights, sizes)
|
|
return batch
|
|
|
|
cdef void _parseC(self, StateC** states,
|
|
WeightsC weights, SizesC sizes) nogil:
|
|
cdef int i, j
|
|
cdef vector[StateC*] unfinished
|
|
cdef ActivationsC activations = alloc_activations(sizes)
|
|
while sizes.states >= 1:
|
|
predict_states(&activations,
|
|
states, &weights, sizes)
|
|
# Validate actions, argmax, take action.
|
|
self.c_transition_batch(states,
|
|
activations.scores, sizes.classes, sizes.states)
|
|
for i in range(sizes.states):
|
|
if not states[i].is_final():
|
|
unfinished.push_back(states[i])
|
|
for i in range(unfinished.size()):
|
|
states[i] = unfinished[i]
|
|
sizes.states = unfinished.size()
|
|
unfinished.clear()
|
|
free_activations(&activations)
|
|
|
|
def set_annotations(self, docs, states, tensors=None):
|
|
cdef StateClass state
|
|
cdef Doc doc
|
|
for i, (state, doc) in enumerate(zip(states, docs)):
|
|
self.moves.finalize_state(state.c)
|
|
for j in range(doc.length):
|
|
doc.c[j] = state.c._sent[j]
|
|
self.moves.finalize_doc(doc)
|
|
for hook in self.postprocesses:
|
|
hook(doc)
|
|
|
|
def transition_states(self, states, float[:, ::1] scores):
|
|
cdef StateClass state
|
|
cdef float* c_scores = &scores[0, 0]
|
|
cdef vector[StateC*] c_states
|
|
for state in states:
|
|
c_states.push_back(state.c)
|
|
self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0])
|
|
return [state for state in states if not state.c.is_final()]
|
|
|
|
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
|
int nr_class, int batch_size) nogil:
|
|
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
|
with gil:
|
|
assert self.moves.n_moves > 0
|
|
is_valid = <int*>calloc(self.moves.n_moves, sizeof(int))
|
|
cdef int i, guess
|
|
cdef Transition action
|
|
for i in range(batch_size):
|
|
self.moves.set_valid(is_valid, states[i])
|
|
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
|
|
if guess == -1:
|
|
# This shouldn't happen, but it's hard to raise an error here,
|
|
# and we don't want to infinite loop. So, force to end state.
|
|
states[i].force_final()
|
|
else:
|
|
action = self.moves.c[guess]
|
|
action.do(states[i], action.label)
|
|
states[i].push_hist(guess)
|
|
free(is_valid)
|
|
|
|
def update(self, examples, drop=0., set_annotations=False, sgd=None, losses=None):
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.)
|
|
for multitask in self._multitasks:
|
|
multitask.update(examples, drop=drop, sgd=sgd)
|
|
set_dropout_rate(self.model, drop)
|
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
|
model, backprop_tok2vec = self.model.begin_update(
|
|
[eg.predicted for eg in examples])
|
|
# Chop sequences into lengths of this many transitions, to make the
|
|
# batch uniform length. We randomize this to overfit less.
|
|
cut_gold = numpy.random.choice(range(20, 100))
|
|
states, golds, max_steps = self._init_gold_batch(
|
|
examples,
|
|
max_length=cut_gold
|
|
)
|
|
all_states = list(states)
|
|
states_golds = zip(states, golds)
|
|
for _ in range(max_steps):
|
|
if not states_golds:
|
|
break
|
|
states, golds = zip(*states_golds)
|
|
scores, backprop = model.begin_update(states)
|
|
d_scores = self.get_batch_loss(states, golds, scores, losses)
|
|
backprop(d_scores)
|
|
# Follow the predicted action
|
|
self.transition_states(states, scores)
|
|
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
|
|
|
|
backprop_tok2vec(golds)
|
|
if sgd not in (None, False):
|
|
self.model.finish_update(sgd)
|
|
if set_annotations:
|
|
docs = [eg.predicted for eg in examples]
|
|
self.set_annotations(docs, all_states)
|
|
return losses
|
|
|
|
def rehearse(self, examples, sgd=None, losses=None, **cfg):
|
|
"""Perform a "rehearsal" update, to prevent catastrophic forgetting."""
|
|
if losses is None:
|
|
losses = {}
|
|
for multitask in self._multitasks:
|
|
if hasattr(multitask, 'rehearse'):
|
|
multitask.rehearse(examples, losses=losses, sgd=sgd)
|
|
if self._rehearsal_model is None:
|
|
return None
|
|
losses.setdefault(self.name, 0.)
|
|
|
|
docs = [eg.predicted for eg in examples]
|
|
states = self.moves.init_batch(docs)
|
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
|
# if labels are missing. We therefore have to check whether we need to
|
|
# expand our model output.
|
|
self._resize()
|
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
|
set_dropout_rate(self._rehearsal_model, 0.0)
|
|
set_dropout_rate(self.model, 0.0)
|
|
tutor, _ = self._rehearsal_model.begin_update(docs)
|
|
model, finish_update = self.model.begin_update(docs)
|
|
n_scores = 0.
|
|
loss = 0.
|
|
while states:
|
|
targets, _ = tutor.begin_update(states)
|
|
guesses, backprop = model.begin_update(states)
|
|
d_scores = (guesses - targets) / targets.shape[0]
|
|
# If all weights for an output are 0 in the original model, don't
|
|
# supervise that output. This allows us to add classes.
|
|
loss += (d_scores**2).sum()
|
|
backprop(d_scores, sgd=sgd)
|
|
# Follow the predicted action
|
|
self.transition_states(states, guesses)
|
|
states = [state for state in states if not state.is_final()]
|
|
n_scores += d_scores.size
|
|
# Do the backprop
|
|
finish_update(docs)
|
|
if sgd is not None:
|
|
self.model.finish_update(sgd)
|
|
losses[self.name] += loss / n_scores
|
|
return losses
|
|
|
|
def get_gradients(self):
|
|
"""Get non-zero gradients of the model's parameters, as a dictionary
|
|
keyed by the parameter ID. The values are (weights, gradients) tuples.
|
|
"""
|
|
gradients = {}
|
|
queue = [self.model]
|
|
seen = set()
|
|
for node in queue:
|
|
if node.id in seen:
|
|
continue
|
|
seen.add(node.id)
|
|
if hasattr(node, "_mem") and node._mem.gradient.any():
|
|
gradients[node.id] = [node._mem.weights, node._mem.gradient]
|
|
if hasattr(node, "_layers"):
|
|
queue.extend(node._layers)
|
|
return gradients
|
|
|
|
def get_batch_loss(self, states, golds, float[:, ::1] scores, losses):
|
|
cdef StateClass state
|
|
cdef Pool mem = Pool()
|
|
cdef int i
|
|
|
|
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
|
assert self.moves.n_moves > 0
|
|
|
|
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
|
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
|
|
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
|
|
dtype='f', order='C')
|
|
c_d_scores = <float*>d_scores.data
|
|
unseen_classes = self.model.attrs["unseen_classes"]
|
|
for i, (state, gold) in enumerate(zip(states, golds)):
|
|
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
|
|
memset(costs, 0, self.moves.n_moves * sizeof(float))
|
|
self.moves.set_costs(is_valid, costs, state, gold)
|
|
for j in range(self.moves.n_moves):
|
|
if costs[j] <= 0.0 and j in unseen_classes:
|
|
unseen_classes.remove(j)
|
|
cpu_log_loss(c_d_scores,
|
|
costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
|
c_d_scores += d_scores.shape[1]
|
|
if len(states):
|
|
d_scores /= len(states)
|
|
if losses is not None:
|
|
losses.setdefault(self.name, 0.)
|
|
losses[self.name] += (d_scores**2).sum()
|
|
return d_scores
|
|
|
|
def create_optimizer(self):
|
|
return create_default_optimizer()
|
|
|
|
def set_output(self, nO):
|
|
self.model.attrs["resize_output"](self.model, nO)
|
|
|
|
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs):
|
|
self.cfg.update(kwargs)
|
|
if len(self.vocab.lookups.get_table("lexeme_norm", {})) == 0:
|
|
warnings.warn(Warnings.W033.format(model="parser or NER"))
|
|
if not hasattr(get_examples, '__call__'):
|
|
gold_tuples = get_examples
|
|
get_examples = lambda: gold_tuples
|
|
actions = self.moves.get_actions(
|
|
examples=get_examples(),
|
|
min_freq=self.cfg['min_action_freq'],
|
|
learn_tokens=self.cfg["learn_tokens"]
|
|
)
|
|
for action, labels in self.moves.labels.items():
|
|
actions.setdefault(action, {})
|
|
for label, freq in labels.items():
|
|
if label not in actions[action]:
|
|
actions[action][label] = freq
|
|
self.moves.initialize_actions(actions)
|
|
# make sure we resize so we have an appropriate upper layer
|
|
self._resize()
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
doc_sample = []
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.predicted)
|
|
|
|
if pipeline is not None:
|
|
for name, component in pipeline:
|
|
if component is self:
|
|
break
|
|
if hasattr(component, "pipe"):
|
|
doc_sample = list(component.pipe(doc_sample))
|
|
else:
|
|
doc_sample = [component(doc) for doc in doc_sample]
|
|
if doc_sample:
|
|
self.model.initialize(doc_sample)
|
|
else:
|
|
self.model.initialize()
|
|
if pipeline is not None:
|
|
self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg)
|
|
link_vectors_to_models(self.vocab)
|
|
return sgd
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
serializers = {
|
|
'model': lambda p: (self.model.to_disk(p) if self.model is not True else True),
|
|
'vocab': lambda p: self.vocab.to_disk(p),
|
|
'moves': lambda p: self.moves.to_disk(p, exclude=["strings"]),
|
|
'cfg': lambda p: srsly.write_json(p, self.cfg)
|
|
}
|
|
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
|
util.to_disk(path, serializers, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
deserializers = {
|
|
'vocab': lambda p: self.vocab.from_disk(p),
|
|
'moves': lambda p: self.moves.from_disk(p, exclude=["strings"]),
|
|
'cfg': lambda p: self.cfg.update(srsly.read_json(p)),
|
|
'model': lambda p: None,
|
|
}
|
|
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
|
util.from_disk(path, deserializers, exclude)
|
|
if 'model' not in exclude:
|
|
path = util.ensure_path(path)
|
|
with (path / 'model').open('rb') as file_:
|
|
bytes_data = file_.read()
|
|
try:
|
|
self._resize()
|
|
self.model.from_bytes(bytes_data)
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
return self
|
|
|
|
def to_bytes(self, exclude=tuple(), **kwargs):
|
|
serializers = {
|
|
"model": lambda: (self.model.to_bytes()),
|
|
"vocab": lambda: self.vocab.to_bytes(),
|
|
"moves": lambda: self.moves.to_bytes(exclude=["strings"]),
|
|
"cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True)
|
|
}
|
|
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple(), **kwargs):
|
|
deserializers = {
|
|
"vocab": lambda b: self.vocab.from_bytes(b),
|
|
"moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]),
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
"model": lambda b: None,
|
|
}
|
|
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
|
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
|
if 'model' not in exclude:
|
|
if 'model' in msg:
|
|
try:
|
|
self.model.from_bytes(msg['model'])
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
return self
|
|
|
|
def _init_gold_batch(self, examples, min_length=5, max_length=500):
|
|
"""Make a square batch, of length equal to the shortest doc. A long
|
|
doc will get multiple states. Let's say we have a doc of length 2*N,
|
|
where N is the shortest doc. We'll make two states, one representing
|
|
long_doc[:N], and another representing long_doc[N:]."""
|
|
cdef:
|
|
StateClass state
|
|
Transition action
|
|
all_states = self.moves.init_batch([eg.predicted for eg in examples])
|
|
kept = []
|
|
for state, eg in zip(all_states, examples):
|
|
if self.moves.has_gold(eg) and not state.is_final():
|
|
gold = self.moves.init_gold(state, eg)
|
|
kept.append((eg, state, gold))
|
|
max_length = max(min_length, min(max_length, min([len(eg.x) for eg in examples])))
|
|
max_moves = 0
|
|
states = []
|
|
golds = []
|
|
for eg, state, gold in kept:
|
|
oracle_actions = self.moves.get_oracle_sequence(eg)
|
|
start = 0
|
|
while start < len(eg.predicted):
|
|
state = state.copy()
|
|
n_moves = 0
|
|
while state.B(0) < start and not state.is_final():
|
|
action = self.moves.c[oracle_actions.pop(0)]
|
|
action.do(state.c, action.label)
|
|
state.c.push_hist(action.clas)
|
|
n_moves += 1
|
|
has_gold = self.moves.has_gold(eg, start=start,
|
|
end=start+max_length)
|
|
if not state.is_final() and has_gold:
|
|
states.append(state)
|
|
golds.append(gold)
|
|
max_moves = max(max_moves, n_moves)
|
|
start += min(max_length, len(eg.x)-start)
|
|
max_moves = max(max_moves, len(oracle_actions))
|
|
return states, golds, max_moves
|