mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from thinc.api import Config, ConfigValidationError
 | |
| import spacy
 | |
| from spacy.lang.en import English
 | |
| from spacy.lang.de import German
 | |
| from spacy.language import Language, DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH
 | |
| from spacy.util import (
 | |
|     registry,
 | |
|     load_model_from_config,
 | |
|     load_config,
 | |
|     load_config_from_str,
 | |
| )
 | |
| from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
 | |
| from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder
 | |
| from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
 | |
| from catalogue import RegistryError
 | |
| 
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| nlp_config_string = """
 | |
| [paths]
 | |
| train = null
 | |
| dev = null
 | |
| 
 | |
| [corpora]
 | |
| 
 | |
| [corpora.train]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.train}
 | |
| 
 | |
| [corpora.dev]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.dev}
 | |
| 
 | |
| [training]
 | |
| 
 | |
| [training.batcher]
 | |
| @batchers = "spacy.batch_by_words.v1"
 | |
| size = 666
 | |
| 
 | |
| [nlp]
 | |
| lang = "en"
 | |
| pipeline = ["tok2vec", "tagger"]
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 342
 | |
| depth = 4
 | |
| window_size = 1
 | |
| embed_size = 2000
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| 
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.width}
 | |
| """
 | |
| 
 | |
| pretrain_config_string = """
 | |
| [paths]
 | |
| train = null
 | |
| dev = null
 | |
| 
 | |
| [corpora]
 | |
| 
 | |
| [corpora.train]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.train}
 | |
| 
 | |
| [corpora.dev]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.dev}
 | |
| 
 | |
| [training]
 | |
| 
 | |
| [training.batcher]
 | |
| @batchers = "spacy.batch_by_words.v1"
 | |
| size = 666
 | |
| 
 | |
| [nlp]
 | |
| lang = "en"
 | |
| pipeline = ["tok2vec", "tagger"]
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 342
 | |
| depth = 4
 | |
| window_size = 1
 | |
| embed_size = 2000
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| 
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.width}
 | |
| 
 | |
| [pretraining]
 | |
| """
 | |
| 
 | |
| 
 | |
| parser_config_string_upper = """
 | |
| [model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "parser"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 66
 | |
| maxout_pieces = 2
 | |
| use_upper = true
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 333
 | |
| depth = 4
 | |
| embed_size = 5555
 | |
| window_size = 1
 | |
| maxout_pieces = 7
 | |
| subword_features = false
 | |
| """
 | |
| 
 | |
| 
 | |
| parser_config_string_no_upper = """
 | |
| [model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "parser"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 66
 | |
| maxout_pieces = 2
 | |
| use_upper = false
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v1"
 | |
| pretrained_vectors = null
 | |
| width = 333
 | |
| depth = 4
 | |
| embed_size = 5555
 | |
| window_size = 1
 | |
| maxout_pieces = 7
 | |
| subword_features = false
 | |
| """
 | |
| 
 | |
| 
 | |
| @registry.architectures("my_test_parser")
 | |
| def my_parser():
 | |
|     tok2vec = build_Tok2Vec_model(
 | |
|         MultiHashEmbed(
 | |
|             width=321,
 | |
|             attrs=["LOWER", "SHAPE"],
 | |
|             rows=[5432, 5432],
 | |
|             include_static_vectors=False,
 | |
|         ),
 | |
|         MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2),
 | |
|     )
 | |
|     parser = build_tb_parser_model(
 | |
|         tok2vec=tok2vec,
 | |
|         state_type="parser",
 | |
|         extra_state_tokens=True,
 | |
|         hidden_width=65,
 | |
|         maxout_pieces=5,
 | |
|         use_upper=True,
 | |
|     )
 | |
|     return parser
 | |
| 
 | |
| 
 | |
| def test_create_nlp_from_config():
 | |
|     config = Config().from_str(nlp_config_string)
 | |
|     with pytest.raises(ConfigValidationError):
 | |
|         load_model_from_config(config, auto_fill=False)
 | |
|     nlp = load_model_from_config(config, auto_fill=True)
 | |
|     assert nlp.config["training"]["batcher"]["size"] == 666
 | |
|     assert len(nlp.config["training"]) > 1
 | |
|     assert nlp.pipe_names == ["tok2vec", "tagger"]
 | |
|     assert len(nlp.config["components"]) == 2
 | |
|     assert len(nlp.config["nlp"]["pipeline"]) == 2
 | |
|     nlp.remove_pipe("tagger")
 | |
|     assert len(nlp.config["components"]) == 1
 | |
|     assert len(nlp.config["nlp"]["pipeline"]) == 1
 | |
|     with pytest.raises(ValueError):
 | |
|         bad_cfg = {"yolo": {}}
 | |
|         load_model_from_config(Config(bad_cfg), auto_fill=True)
 | |
|     with pytest.raises(ValueError):
 | |
|         bad_cfg = {"pipeline": {"foo": "bar"}}
 | |
|         load_model_from_config(Config(bad_cfg), auto_fill=True)
 | |
| 
 | |
| 
 | |
| def test_create_nlp_from_pretraining_config():
 | |
|     """Test that the default pretraining config validates properly"""
 | |
|     config = Config().from_str(pretrain_config_string)
 | |
|     pretrain_config = load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | |
|     filled = config.merge(pretrain_config)
 | |
|     registry.resolve(filled["pretraining"], schema=ConfigSchemaPretrain)
 | |
| 
 | |
| 
 | |
| def test_create_nlp_from_config_multiple_instances():
 | |
|     """Test that the nlp object is created correctly for a config with multiple
 | |
|     instances of the same component."""
 | |
|     config = Config().from_str(nlp_config_string)
 | |
|     config["components"] = {
 | |
|         "t2v": config["components"]["tok2vec"],
 | |
|         "tagger1": config["components"]["tagger"],
 | |
|         "tagger2": config["components"]["tagger"],
 | |
|     }
 | |
|     config["nlp"]["pipeline"] = list(config["components"].keys())
 | |
|     nlp = load_model_from_config(config, auto_fill=True)
 | |
|     assert nlp.pipe_names == ["t2v", "tagger1", "tagger2"]
 | |
|     assert nlp.get_pipe_meta("t2v").factory == "tok2vec"
 | |
|     assert nlp.get_pipe_meta("tagger1").factory == "tagger"
 | |
|     assert nlp.get_pipe_meta("tagger2").factory == "tagger"
 | |
|     pipeline_config = nlp.config["components"]
 | |
|     assert len(pipeline_config) == 3
 | |
|     assert list(pipeline_config.keys()) == ["t2v", "tagger1", "tagger2"]
 | |
|     assert nlp.config["nlp"]["pipeline"] == ["t2v", "tagger1", "tagger2"]
 | |
| 
 | |
| 
 | |
| def test_serialize_nlp():
 | |
|     """Create a custom nlp pipeline from config and ensure it serializes it correctly"""
 | |
|     nlp_config = Config().from_str(nlp_config_string)
 | |
|     nlp = load_model_from_config(nlp_config, auto_fill=True)
 | |
|     nlp.get_pipe("tagger").add_label("A")
 | |
|     nlp.initialize()
 | |
|     assert "tok2vec" in nlp.pipe_names
 | |
|     assert "tagger" in nlp.pipe_names
 | |
|     assert "parser" not in nlp.pipe_names
 | |
|     assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         assert "tok2vec" in nlp2.pipe_names
 | |
|         assert "tagger" in nlp2.pipe_names
 | |
|         assert "parser" not in nlp2.pipe_names
 | |
|         assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | |
| 
 | |
| 
 | |
| def test_serialize_custom_nlp():
 | |
|     """Create a custom nlp pipeline and ensure it serializes it correctly"""
 | |
|     nlp = English()
 | |
|     parser_cfg = dict()
 | |
|     parser_cfg["model"] = {"@architectures": "my_test_parser"}
 | |
|     nlp.add_pipe("parser", config=parser_cfg)
 | |
|     nlp.initialize()
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         model = nlp2.get_pipe("parser").model
 | |
|         model.get_ref("tok2vec")
 | |
|         # check that we have the correct settings, not the default ones
 | |
|         assert model.get_ref("upper").get_dim("nI") == 65
 | |
|         assert model.get_ref("lower").get_dim("nI") == 65
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
 | |
| )
 | |
| def test_serialize_parser(parser_config_string):
 | |
|     """Create a non-default parser config to check nlp serializes it correctly"""
 | |
|     nlp = English()
 | |
|     model_config = Config().from_str(parser_config_string)
 | |
|     parser = nlp.add_pipe("parser", config=model_config)
 | |
|     parser.add_label("nsubj")
 | |
|     nlp.initialize()
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|         model = nlp2.get_pipe("parser").model
 | |
|         model.get_ref("tok2vec")
 | |
|         # check that we have the correct settings, not the default ones
 | |
|         if model.attrs["has_upper"]:
 | |
|             assert model.get_ref("upper").get_dim("nI") == 66
 | |
|         assert model.get_ref("lower").get_dim("nI") == 66
 | |
| 
 | |
| 
 | |
| def test_config_nlp_roundtrip():
 | |
|     """Test that a config produced by the nlp object passes training config
 | |
|     validation."""
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("entity_ruler")
 | |
|     nlp.add_pipe("ner")
 | |
|     new_nlp = load_model_from_config(nlp.config, auto_fill=False)
 | |
|     assert new_nlp.config == nlp.config
 | |
|     assert new_nlp.pipe_names == nlp.pipe_names
 | |
|     assert new_nlp._pipe_configs == nlp._pipe_configs
 | |
|     assert new_nlp._pipe_meta == nlp._pipe_meta
 | |
|     assert new_nlp._factory_meta == nlp._factory_meta
 | |
| 
 | |
| 
 | |
| def test_config_nlp_roundtrip_bytes_disk():
 | |
|     """Test that the config is serialized correctly and not interpolated
 | |
|     by mistake."""
 | |
|     nlp = English()
 | |
|     nlp_bytes = nlp.to_bytes()
 | |
|     new_nlp = English().from_bytes(nlp_bytes)
 | |
|     assert new_nlp.config == nlp.config
 | |
|     nlp = English()
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         new_nlp = spacy.load(d)
 | |
|     assert new_nlp.config == nlp.config
 | |
| 
 | |
| 
 | |
| def test_serialize_config_language_specific():
 | |
|     """Test that config serialization works as expected with language-specific
 | |
|     factories."""
 | |
|     name = "test_serialize_config_language_specific"
 | |
| 
 | |
|     @English.factory(name, default_config={"foo": 20})
 | |
|     def custom_factory(nlp: Language, name: str, foo: int):
 | |
|         return lambda doc: doc
 | |
| 
 | |
|     nlp = Language()
 | |
|     assert not nlp.has_factory(name)
 | |
|     nlp = English()
 | |
|     assert nlp.has_factory(name)
 | |
|     nlp.add_pipe(name, config={"foo": 100}, name="bar")
 | |
|     pipe_config = nlp.config["components"]["bar"]
 | |
|     assert pipe_config["foo"] == 100
 | |
|     assert pipe_config["factory"] == name
 | |
| 
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
|         nlp2 = spacy.load(d)
 | |
|     assert nlp2.has_factory(name)
 | |
|     assert nlp2.pipe_names == ["bar"]
 | |
|     assert nlp2.get_pipe_meta("bar").factory == name
 | |
|     pipe_config = nlp2.config["components"]["bar"]
 | |
|     assert pipe_config["foo"] == 100
 | |
|     assert pipe_config["factory"] == name
 | |
| 
 | |
|     config = Config().from_str(nlp2.config.to_str())
 | |
|     config["nlp"]["lang"] = "de"
 | |
|     with pytest.raises(ValueError):
 | |
|         # German doesn't have a factory, only English does
 | |
|         load_model_from_config(config)
 | |
| 
 | |
| 
 | |
| def test_serialize_config_missing_pipes():
 | |
|     config = Config().from_str(nlp_config_string)
 | |
|     config["components"].pop("tok2vec")
 | |
|     assert "tok2vec" in config["nlp"]["pipeline"]
 | |
|     assert "tok2vec" not in config["components"]
 | |
|     with pytest.raises(ValueError):
 | |
|         load_model_from_config(config, auto_fill=True)
 | |
| 
 | |
| 
 | |
| def test_config_overrides():
 | |
|     overrides_nested = {"nlp": {"lang": "de", "pipeline": ["tagger"]}}
 | |
|     overrides_dot = {"nlp.lang": "de", "nlp.pipeline": ["tagger"]}
 | |
|     # load_model from config with overrides passed directly to Config
 | |
|     config = Config().from_str(nlp_config_string, overrides=overrides_dot)
 | |
|     nlp = load_model_from_config(config, auto_fill=True)
 | |
|     assert isinstance(nlp, German)
 | |
|     assert nlp.pipe_names == ["tagger"]
 | |
|     # Serialized roundtrip with config passed in
 | |
|     base_config = Config().from_str(nlp_config_string)
 | |
|     base_nlp = load_model_from_config(base_config, auto_fill=True)
 | |
|     assert isinstance(base_nlp, English)
 | |
|     assert base_nlp.pipe_names == ["tok2vec", "tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         base_nlp.to_disk(d)
 | |
|         nlp = spacy.load(d, config=overrides_nested)
 | |
|     assert isinstance(nlp, German)
 | |
|     assert nlp.pipe_names == ["tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         base_nlp.to_disk(d)
 | |
|         nlp = spacy.load(d, config=overrides_dot)
 | |
|     assert isinstance(nlp, German)
 | |
|     assert nlp.pipe_names == ["tagger"]
 | |
|     with make_tempdir() as d:
 | |
|         base_nlp.to_disk(d)
 | |
|         nlp = spacy.load(d)
 | |
|     assert isinstance(nlp, English)
 | |
|     assert nlp.pipe_names == ["tok2vec", "tagger"]
 | |
| 
 | |
| 
 | |
| def test_config_interpolation():
 | |
|     config = Config().from_str(nlp_config_string, interpolate=False)
 | |
|     assert config["corpora"]["train"]["path"] == "${paths.train}"
 | |
|     interpolated = config.interpolate()
 | |
|     assert interpolated["corpora"]["train"]["path"] is None
 | |
|     nlp = English.from_config(config)
 | |
|     assert nlp.config["corpora"]["train"]["path"] == "${paths.train}"
 | |
|     # Ensure that variables are preserved in nlp config
 | |
|     width = "${components.tok2vec.model.width}"
 | |
|     assert config["components"]["tagger"]["model"]["tok2vec"]["width"] == width
 | |
|     assert nlp.config["components"]["tagger"]["model"]["tok2vec"]["width"] == width
 | |
|     interpolated2 = nlp.config.interpolate()
 | |
|     assert interpolated2["corpora"]["train"]["path"] is None
 | |
|     assert interpolated2["components"]["tagger"]["model"]["tok2vec"]["width"] == 342
 | |
|     nlp2 = English.from_config(interpolated)
 | |
|     assert nlp2.config["corpora"]["train"]["path"] is None
 | |
|     assert nlp2.config["components"]["tagger"]["model"]["tok2vec"]["width"] == 342
 | |
| 
 | |
| 
 | |
| def test_config_optional_sections():
 | |
|     config = Config().from_str(nlp_config_string)
 | |
|     config = DEFAULT_CONFIG.merge(config)
 | |
|     assert "pretraining" not in config
 | |
|     filled = registry.fill(config, schema=ConfigSchema, validate=False)
 | |
|     # Make sure that optional "pretraining" block doesn't default to None,
 | |
|     # which would (rightly) cause error because it'd result in a top-level
 | |
|     # key that's not a section (dict). Note that the following roundtrip is
 | |
|     # also how Config.interpolate works under the hood.
 | |
|     new_config = Config().from_str(filled.to_str())
 | |
|     assert new_config["pretraining"] == {}
 | |
| 
 | |
| 
 | |
| def test_config_auto_fill_extra_fields():
 | |
|     config = Config({"nlp": {"lang": "en"}, "training": {}})
 | |
|     assert load_model_from_config(config, auto_fill=True)
 | |
|     config = Config({"nlp": {"lang": "en"}, "training": {"extra": "hello"}})
 | |
|     nlp = load_model_from_config(config, auto_fill=True, validate=False)
 | |
|     assert "extra" not in nlp.config["training"]
 | |
|     # Make sure the config generated is valid
 | |
|     load_model_from_config(nlp.config)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
 | |
| )
 | |
| def test_config_validate_literal(parser_config_string):
 | |
|     nlp = English()
 | |
|     config = Config().from_str(parser_config_string)
 | |
|     config["model"]["state_type"] = "nonsense"
 | |
|     with pytest.raises(ConfigValidationError):
 | |
|         nlp.add_pipe("parser", config=config)
 | |
|     config["model"]["state_type"] = "ner"
 | |
|     nlp.add_pipe("parser", config=config)
 | |
| 
 | |
| 
 | |
| def test_config_only_resolve_relevant_blocks():
 | |
|     """Test that only the relevant blocks are resolved in the different methods
 | |
|     and that invalid blocks are ignored if needed. For instance, the [initialize]
 | |
|     shouldn't be resolved at runtime.
 | |
|     """
 | |
|     nlp = English()
 | |
|     config = nlp.config
 | |
|     config["training"]["before_to_disk"] = {"@misc": "nonexistent"}
 | |
|     config["initialize"]["lookups"] = {"@misc": "nonexistent"}
 | |
|     # This shouldn't resolve [training] or [initialize]
 | |
|     nlp = load_model_from_config(config, auto_fill=True)
 | |
|     # This will raise for nonexistent value
 | |
|     with pytest.raises(RegistryError):
 | |
|         nlp.initialize()
 | |
|     nlp.config["initialize"]["lookups"] = None
 | |
|     nlp.initialize()
 | |
| 
 | |
| 
 | |
| def test_hyphen_in_config():
 | |
|     hyphen_config_str = """
 | |
|     [nlp]
 | |
|     lang = "en"
 | |
|     pipeline = ["my_punctual_component"]
 | |
| 
 | |
|     [components]
 | |
| 
 | |
|     [components.my_punctual_component]
 | |
|     factory = "my_punctual_component"
 | |
|     punctuation = ["?","-"]
 | |
|     """
 | |
| 
 | |
|     @spacy.Language.factory("my_punctual_component")
 | |
|     class MyPunctualComponent(object):
 | |
|         name = "my_punctual_component"
 | |
| 
 | |
|         def __init__(
 | |
|             self,
 | |
|             nlp,
 | |
|             name,
 | |
|             punctuation,
 | |
|         ):
 | |
|             self.punctuation = punctuation
 | |
| 
 | |
|     nlp = English.from_config(load_config_from_str(hyphen_config_str))
 | |
|     assert nlp.get_pipe("my_punctual_component").punctuation == ["?", "-"]
 |