mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			127 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Any, Dict, Iterator
 | |
| 
 | |
| from ...language import BaseDefaults, Language
 | |
| from ...scorer import Scorer
 | |
| from ...symbols import POS, X
 | |
| from ...tokens import Doc
 | |
| from ...training import validate_examples
 | |
| from ...util import DummyTokenizer, load_config_from_str, registry
 | |
| from ...vocab import Vocab
 | |
| from .lex_attrs import LEX_ATTRS
 | |
| from .punctuation import TOKENIZER_INFIXES
 | |
| from .stop_words import STOP_WORDS
 | |
| from .tag_map import TAG_MAP
 | |
| 
 | |
| DEFAULT_CONFIG = """
 | |
| [nlp]
 | |
| 
 | |
| [nlp.tokenizer]
 | |
| @tokenizers = "spacy.ko.KoreanTokenizer"
 | |
| """
 | |
| 
 | |
| 
 | |
| @registry.tokenizers("spacy.ko.KoreanTokenizer")
 | |
| def create_tokenizer():
 | |
|     def korean_tokenizer_factory(nlp):
 | |
|         return KoreanTokenizer(nlp.vocab)
 | |
| 
 | |
|     return korean_tokenizer_factory
 | |
| 
 | |
| 
 | |
| class KoreanTokenizer(DummyTokenizer):
 | |
|     def __init__(self, vocab: Vocab):
 | |
|         self.vocab = vocab
 | |
|         self._mecab = try_mecab_import()  # type: ignore[func-returns-value]
 | |
|         self._mecab_tokenizer = None
 | |
| 
 | |
|     @property
 | |
|     def mecab_tokenizer(self):
 | |
|         # This is a property so that initializing a pipeline with blank:ko is
 | |
|         # possible without actually requiring mecab-ko, e.g. to run
 | |
|         # `spacy init vectors ko` for a pipeline that will have a different
 | |
|         # tokenizer in the end. The languages need to match for the vectors
 | |
|         # to be imported and there's no way to pass a custom config to
 | |
|         # `init vectors`.
 | |
|         if self._mecab_tokenizer is None:
 | |
|             self._mecab_tokenizer = self._mecab("-F%f[0],%f[7]")
 | |
|         return self._mecab_tokenizer
 | |
| 
 | |
|     def __reduce__(self):
 | |
|         return KoreanTokenizer, (self.vocab,)
 | |
| 
 | |
|     def __call__(self, text: str) -> Doc:
 | |
|         dtokens = list(self.detailed_tokens(text))
 | |
|         surfaces = [dt["surface"] for dt in dtokens]
 | |
|         doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
 | |
|         for token, dtoken in zip(doc, dtokens):
 | |
|             first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
 | |
|             token.tag_ = first_tag  # stem(어간) or pre-final(선어말 어미)
 | |
|             if token.tag_ in TAG_MAP:
 | |
|                 token.pos = TAG_MAP[token.tag_][POS]
 | |
|             else:
 | |
|                 token.pos = X
 | |
|             token.lemma_ = dtoken["lemma"]
 | |
|         doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
 | |
|         return doc
 | |
| 
 | |
|     def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]:
 | |
|         # 품사 태그(POS)[0], 의미 부류(semantic class)[1],	종성 유무(jongseong)[2], 읽기(reading)[3],
 | |
|         # 타입(type)[4], 첫번째 품사(start pos)[5],	마지막 품사(end pos)[6], 표현(expression)[7], *
 | |
|         for node in self.mecab_tokenizer.parse(text, as_nodes=True):
 | |
|             if node.is_eos():
 | |
|                 break
 | |
|             surface = node.surface
 | |
|             feature = node.feature
 | |
|             tag, _, expr = feature.partition(",")
 | |
|             lemma, _, remainder = expr.partition("/")
 | |
|             if lemma == "*":
 | |
|                 lemma = surface
 | |
|             yield {"surface": surface, "lemma": lemma, "tag": tag}
 | |
| 
 | |
|     def score(self, examples):
 | |
|         validate_examples(examples, "KoreanTokenizer.score")
 | |
|         return Scorer.score_tokenization(examples)
 | |
| 
 | |
| 
 | |
| class KoreanDefaults(BaseDefaults):
 | |
|     config = load_config_from_str(DEFAULT_CONFIG)
 | |
|     lex_attr_getters = LEX_ATTRS
 | |
|     stop_words = STOP_WORDS
 | |
|     writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
 | |
|     infixes = TOKENIZER_INFIXES
 | |
| 
 | |
| 
 | |
| class Korean(Language):
 | |
|     lang = "ko"
 | |
|     Defaults = KoreanDefaults
 | |
| 
 | |
| 
 | |
| def try_mecab_import() -> None:
 | |
|     try:
 | |
|         from natto import MeCab
 | |
| 
 | |
|         return MeCab
 | |
|     except ImportError:
 | |
|         raise ImportError(
 | |
|             'The Korean tokenizer ("spacy.ko.KoreanTokenizer") requires '
 | |
|             "[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
 | |
|             "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
 | |
|             "and [natto-py](https://github.com/buruzaemon/natto-py)"
 | |
|         ) from None
 | |
| 
 | |
| 
 | |
| def check_spaces(text, tokens):
 | |
|     prev_end = -1
 | |
|     start = 0
 | |
|     for token in tokens:
 | |
|         idx = text.find(token, start)
 | |
|         if prev_end > 0:
 | |
|             yield prev_end != idx
 | |
|         prev_end = idx + len(token)
 | |
|         start = prev_end
 | |
|     if start > 0:
 | |
|         yield False
 | |
| 
 | |
| 
 | |
| __all__ = ["Korean"]
 |