spaCy/spacy/cli/apply.py
kadarakos c223cd7a86
Add apply CLI (#11376)
* annotate cli first try

* add batch-size and n_process

* rename to apply

* typing fix

* handle file suffixes

* walk directories

* support jsonl

* typing fix

* remove debug

* make suffix optional for walk

* revert unrelated

* don't warn but raise

* better error message

* minor touch up

* Update spacy/tests/test_cli.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Update spacy/cli/apply.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/cli/apply.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* update tests and bugfix

* add force_overwrite

* typo

* fix adding .spacy suffix

* Update spacy/cli/apply.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/cli/apply.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/cli/apply.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* store user data and rename cmd arg

* include test for user attr

* rename cmd arg

* better help message

* documentation

* prettier

* black

* link fix

* Update spacy/cli/apply.py

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update website/docs/api/cli.md

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update website/docs/api/cli.md

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* Update website/docs/api/cli.md

Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>

* addressing reviews

* dont quit but warn

* prettier

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
2022-12-20 17:11:33 +01:00

144 lines
4.7 KiB
Python

import tqdm
import srsly
from itertools import chain
from pathlib import Path
from typing import Optional, List, Iterable, cast, Union
from wasabi import msg
from ._util import app, Arg, Opt, setup_gpu, import_code, walk_directory
from ..tokens import Doc, DocBin
from ..vocab import Vocab
from ..util import ensure_path, load_model
path_help = """Location of the documents to predict on.
Can be a single file in .spacy format or a .jsonl file.
Files with other extensions are treated as single plain text documents.
If a directory is provided it is traversed recursively to grab
all files to be processed.
The files can be a mixture of .spacy, .jsonl and text files.
If .jsonl is provided the specified field is going
to be grabbed ("text" by default)."""
out_help = "Path to save the resulting .spacy file"
code_help = (
"Path to Python file with additional " "code (registered functions) to be imported"
)
gold_help = "Use gold preprocessing provided in the .spacy files"
force_msg = (
"The provided output file already exists. "
"To force overwriting the output file, set the --force or -F flag."
)
DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
"""
Stream Doc objects from DocBin.
"""
docbin = DocBin().from_disk(path)
for doc in docbin.get_docs(vocab):
yield doc
def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
"""
Stream "text" field from JSONL. If the field "text" is
not found it raises error.
"""
for entry in srsly.read_jsonl(path):
if field not in entry:
msg.fail(
f"{path} does not contain the required '{field}' field.", exits=1
)
else:
yield entry[field]
def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
"""
Yields strings from text files in paths.
"""
for path in paths:
with open(path, "r") as fin:
text = fin.read()
yield text
@app.command("apply")
def apply_cli(
# fmt: off
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help=path_help, exists=True),
output_file: Path = Arg(..., help=out_help, dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
):
"""
Apply a trained pipeline to documents to get predictions.
Expects a loadable spaCy pipeline and path to the data, which
can be a directory or a file.
The data files can be provided in multiple formats:
1. .spacy files
2. .jsonl files with a specified "field" to read the text from.
3. Files with any other extension are assumed to be containing
a single document.
DOCS: https://spacy.io/api/cli#apply
"""
data_path = ensure_path(data_path)
output_file = ensure_path(output_file)
code_path = ensure_path(code_path)
if output_file.exists() and not force_overwrite:
msg.fail(force_msg, exits=1)
if not data_path.exists():
msg.fail(f"Couldn't find data path: {data_path}", exits=1)
import_code(code_path)
setup_gpu(use_gpu)
apply(data_path, output_file, model, text_key, batch_size, n_process)
def apply(
data_path: Path,
output_file: Path,
model: str,
json_field: str,
batch_size: int,
n_process: int,
):
docbin = DocBin(store_user_data=True)
paths = walk_directory(data_path)
if len(paths) == 0:
docbin.to_disk(output_file)
msg.warn("Did not find data to process,"
f" {data_path} seems to be an empty directory.")
return
nlp = load_model(model)
msg.good(f"Loaded model {model}")
vocab = nlp.vocab
streams: List[DocOrStrStream] = []
text_files = []
for path in paths:
if path.suffix == ".spacy":
streams.append(_stream_docbin(path, vocab))
elif path.suffix == ".jsonl":
streams.append(_stream_jsonl(path, json_field))
else:
text_files.append(path)
if len(text_files) > 0:
streams.append(_stream_texts(text_files))
datagen = cast(DocOrStrStream, chain(*streams))
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
docbin.add(doc)
if output_file.suffix == "":
output_file = output_file.with_suffix(".spacy")
docbin.to_disk(output_file)