mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
d33953037e
* Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit70f4e8adf3
. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commitbdebbef455
. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit62358dd867
. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
1089 lines
43 KiB
Cython
1089 lines
43 KiB
Cython
# coding: utf8
|
||
# cython: infer_types=True
|
||
# cython: bounds_check=False
|
||
# cython: profile=True
|
||
from __future__ import unicode_literals
|
||
|
||
cimport cython
|
||
cimport numpy as np
|
||
import numpy
|
||
import numpy.linalg
|
||
import struct
|
||
import dill
|
||
import msgpack
|
||
from thinc.neural.util import get_array_module, copy_array
|
||
|
||
from libc.string cimport memcpy, memset
|
||
from libc.math cimport sqrt
|
||
|
||
from .span cimport Span
|
||
from .token cimport Token
|
||
from .span cimport Span
|
||
from .token cimport Token
|
||
from .printers import parse_tree
|
||
from ..lexeme cimport Lexeme, EMPTY_LEXEME
|
||
from ..typedefs cimport attr_t, flags_t
|
||
from ..attrs import intify_attrs, IDS
|
||
from ..attrs cimport attr_id_t
|
||
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, CLUSTER
|
||
from ..attrs cimport LENGTH, POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB
|
||
from ..attrs cimport ENT_TYPE, SENT_START
|
||
from ..parts_of_speech cimport CCONJ, PUNCT, NOUN, univ_pos_t
|
||
from ..util import normalize_slice
|
||
from ..compat import is_config, copy_reg, pickle, basestring_
|
||
from ..errors import deprecation_warning, models_warning, user_warning
|
||
from ..errors import Errors, Warnings
|
||
from .. import util
|
||
from .underscore import Underscore, get_ext_args
|
||
from ._retokenize import Retokenizer
|
||
|
||
DEF PADDING = 5
|
||
|
||
|
||
cdef int bounds_check(int i, int length, int padding) except -1:
|
||
if (i + padding) < 0:
|
||
raise IndexError(Errors.E026.format(i=i, length=length))
|
||
if (i - padding) >= length:
|
||
raise IndexError(Errors.E026.format(i=i, length=length))
|
||
|
||
|
||
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
|
||
if feat_name == LEMMA:
|
||
return token.lemma
|
||
elif feat_name == POS:
|
||
return token.pos
|
||
elif feat_name == TAG:
|
||
return token.tag
|
||
elif feat_name == DEP:
|
||
return token.dep
|
||
elif feat_name == HEAD:
|
||
return token.head
|
||
elif feat_name == SENT_START:
|
||
return token.sent_start
|
||
elif feat_name == SPACY:
|
||
return token.spacy
|
||
elif feat_name == ENT_IOB:
|
||
return token.ent_iob
|
||
elif feat_name == ENT_TYPE:
|
||
return token.ent_type
|
||
else:
|
||
return Lexeme.get_struct_attr(token.lex, feat_name)
|
||
|
||
|
||
def _get_chunker(lang):
|
||
try:
|
||
cls = util.get_lang_class(lang)
|
||
except ImportError:
|
||
return None
|
||
except KeyError:
|
||
return None
|
||
return cls.Defaults.syntax_iterators.get(u'noun_chunks')
|
||
|
||
|
||
cdef class Doc:
|
||
"""A sequence of Token objects. Access sentences and named entities, export
|
||
annotations to numpy arrays, losslessly serialize to compressed binary
|
||
strings. The `Doc` object holds an array of `TokenC` structs. The
|
||
Python-level `Token` and `Span` objects are views of this array, i.e.
|
||
they don't own the data themselves.
|
||
|
||
EXAMPLE: Construction 1
|
||
>>> doc = nlp(u'Some text')
|
||
|
||
Construction 2
|
||
>>> from spacy.tokens import Doc
|
||
>>> doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
|
||
spaces=[True, False, False])
|
||
"""
|
||
@classmethod
|
||
def set_extension(cls, name, **kwargs):
|
||
if cls.has_extension(name) and not kwargs.get('force', False):
|
||
raise ValueError(Errors.E090.format(name=name, obj='Doc'))
|
||
Underscore.doc_extensions[name] = get_ext_args(**kwargs)
|
||
|
||
@classmethod
|
||
def get_extension(cls, name):
|
||
return Underscore.doc_extensions.get(name)
|
||
|
||
@classmethod
|
||
def has_extension(cls, name):
|
||
return name in Underscore.doc_extensions
|
||
|
||
@classmethod
|
||
def remove_extension(cls, name):
|
||
if not cls.has_extension(name):
|
||
raise ValueError(Errors.E046.format(name=name))
|
||
return Underscore.doc_extensions.pop(name)
|
||
|
||
def __init__(self, Vocab vocab, words=None, spaces=None, user_data=None,
|
||
orths_and_spaces=None):
|
||
"""Create a Doc object.
|
||
|
||
vocab (Vocab): A vocabulary object, which must match any models you
|
||
want to use (e.g. tokenizer, parser, entity recognizer).
|
||
words (list or None): A list of unicode strings to add to the document
|
||
as words. If `None`, defaults to empty list.
|
||
spaces (list or None): A list of boolean values, of the same length as
|
||
words. True means that the word is followed by a space, False means
|
||
it is not. If `None`, defaults to `[True]*len(words)`
|
||
user_data (dict or None): Optional extra data to attach to the Doc.
|
||
RETURNS (Doc): The newly constructed object.
|
||
"""
|
||
self.vocab = vocab
|
||
size = 20
|
||
self.mem = Pool()
|
||
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
|
||
# However, we need to remember the true starting places, so that we can
|
||
# realloc.
|
||
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
|
||
cdef int i
|
||
for i in range(size + (PADDING*2)):
|
||
data_start[i].lex = &EMPTY_LEXEME
|
||
data_start[i].l_edge = i
|
||
data_start[i].r_edge = i
|
||
self.c = data_start + PADDING
|
||
self.max_length = size
|
||
self.length = 0
|
||
self.is_tagged = False
|
||
self.is_parsed = False
|
||
self.sentiment = 0.0
|
||
self.cats = {}
|
||
self.user_hooks = {}
|
||
self.user_token_hooks = {}
|
||
self.user_span_hooks = {}
|
||
self.tensor = numpy.zeros((0,), dtype='float32')
|
||
self.user_data = {} if user_data is None else user_data
|
||
self._vector = None
|
||
self.noun_chunks_iterator = _get_chunker(self.vocab.lang)
|
||
cdef unicode orth
|
||
cdef bint has_space
|
||
if orths_and_spaces is None and words is not None:
|
||
if spaces is None:
|
||
spaces = [True] * len(words)
|
||
elif len(spaces) != len(words):
|
||
raise ValueError(Errors.E027)
|
||
orths_and_spaces = zip(words, spaces)
|
||
if orths_and_spaces is not None:
|
||
for orth_space in orths_and_spaces:
|
||
if isinstance(orth_space, unicode):
|
||
orth = orth_space
|
||
has_space = True
|
||
elif isinstance(orth_space, bytes):
|
||
raise ValueError(Errors.E028.format(value=orth_space))
|
||
else:
|
||
orth, has_space = orth_space
|
||
# Note that we pass self.mem here --- we have ownership, if LexemeC
|
||
# must be created.
|
||
self.push_back(
|
||
<const LexemeC*>self.vocab.get(self.mem, orth), has_space)
|
||
# Tough to decide on policy for this. Is an empty doc tagged and parsed?
|
||
# There's no information we'd like to add to it, so I guess so?
|
||
if self.length == 0:
|
||
self.is_tagged = True
|
||
self.is_parsed = True
|
||
|
||
@property
|
||
def _(self):
|
||
return Underscore(Underscore.doc_extensions, self)
|
||
|
||
@property
|
||
def is_sentenced(self):
|
||
# Check if the document has sentence boundaries,
|
||
# i.e at least one tok has the sent_start in (-1, 1)
|
||
if 'sents' in self.user_hooks:
|
||
return True
|
||
if self.is_parsed:
|
||
return True
|
||
for i in range(self.length):
|
||
if self.c[i].sent_start == -1 or self.c[i].sent_start == 1:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
def __getitem__(self, object i):
|
||
"""Get a `Token` or `Span` object.
|
||
|
||
i (int or tuple) The index of the token, or the slice of the document
|
||
to get.
|
||
RETURNS (Token or Span): The token at `doc[i]]`, or the span at
|
||
`doc[start : end]`.
|
||
|
||
EXAMPLE:
|
||
>>> doc[i]
|
||
Get the `Token` object at position `i`, where `i` is an integer.
|
||
Negative indexing is supported, and follows the usual Python
|
||
semantics, i.e. `doc[-2]` is `doc[len(doc) - 2]`.
|
||
|
||
>>> doc[start : end]]
|
||
Get a `Span` object, starting at position `start` and ending at
|
||
position `end`, where `start` and `end` are token indices. For
|
||
instance, `doc[2:5]` produces a span consisting of tokens 2, 3 and
|
||
4. Stepped slices (e.g. `doc[start : end : step]`) are not
|
||
supported, as `Span` objects must be contiguous (cannot have gaps).
|
||
You can use negative indices and open-ended ranges, which have
|
||
their normal Python semantics.
|
||
"""
|
||
if isinstance(i, slice):
|
||
start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
|
||
return Span(self, start, stop, label=0)
|
||
|
||
if i < 0:
|
||
i = self.length + i
|
||
bounds_check(i, self.length, PADDING)
|
||
return Token.cinit(self.vocab, &self.c[i], i, self)
|
||
|
||
def __iter__(self):
|
||
"""Iterate over `Token` objects, from which the annotations can be
|
||
easily accessed. This is the main way of accessing `Token` objects,
|
||
which are the main way annotations are accessed from Python. If faster-
|
||
than-Python speeds are required, you can instead access the annotations
|
||
as a numpy array, or access the underlying C data directly from Cython.
|
||
|
||
EXAMPLE:
|
||
>>> for token in doc
|
||
"""
|
||
cdef int i
|
||
for i in range(self.length):
|
||
yield Token.cinit(self.vocab, &self.c[i], i, self)
|
||
|
||
def __len__(self):
|
||
"""The number of tokens in the document.
|
||
|
||
RETURNS (int): The number of tokens in the document.
|
||
|
||
EXAMPLE:
|
||
>>> len(doc)
|
||
"""
|
||
return self.length
|
||
|
||
def __unicode__(self):
|
||
return u''.join([t.text_with_ws for t in self])
|
||
|
||
def __bytes__(self):
|
||
return u''.join([t.text_with_ws for t in self]).encode('utf-8')
|
||
|
||
def __str__(self):
|
||
if is_config(python3=True):
|
||
return self.__unicode__()
|
||
return self.__bytes__()
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
@property
|
||
def doc(self):
|
||
return self
|
||
|
||
def char_span(self, int start_idx, int end_idx, label=0, vector=None):
|
||
"""Create a `Span` object from the slice `doc.text[start : end]`.
|
||
|
||
doc (Doc): The parent document.
|
||
start (int): The index of the first character of the span.
|
||
end (int): The index of the first character after the span.
|
||
label (uint64 or string): A label to attach to the Span, e.g. for
|
||
named entities.
|
||
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
|
||
the span.
|
||
RETURNS (Span): The newly constructed object.
|
||
"""
|
||
if not isinstance(label, int):
|
||
label = self.vocab.strings.add(label)
|
||
cdef int start = token_by_start(self.c, self.length, start_idx)
|
||
if start == -1:
|
||
return None
|
||
cdef int end = token_by_end(self.c, self.length, end_idx)
|
||
if end == -1:
|
||
return None
|
||
# Currently we have the token index, we want the range-end index
|
||
end += 1
|
||
cdef Span span = Span(self, start, end, label=label, vector=vector)
|
||
return span
|
||
|
||
def similarity(self, other):
|
||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
other (object): The object to compare with. By default, accepts `Doc`,
|
||
`Span`, `Token` and `Lexeme` objects.
|
||
RETURNS (float): A scalar similarity score. Higher is more similar.
|
||
"""
|
||
if 'similarity' in self.user_hooks:
|
||
return self.user_hooks['similarity'](self, other)
|
||
if isinstance(other, (Lexeme, Token)) and self.length == 1:
|
||
if self.c[0].lex.orth == other.orth:
|
||
return 1.0
|
||
elif isinstance(other, (Span, Doc)):
|
||
if len(self) == len(other):
|
||
for i in range(self.length):
|
||
if self[i].orth != other[i].orth:
|
||
break
|
||
else:
|
||
return 1.0
|
||
if self.vocab.vectors.n_keys == 0:
|
||
models_warning(Warnings.W007.format(obj='Doc'))
|
||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||
user_warning(Warnings.W008.format(obj='Doc'))
|
||
return 0.0
|
||
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||
|
||
property has_vector:
|
||
"""A boolean value indicating whether a word vector is associated with
|
||
the object.
|
||
|
||
RETURNS (bool): Whether a word vector is associated with the object.
|
||
"""
|
||
def __get__(self):
|
||
if 'has_vector' in self.user_hooks:
|
||
return self.user_hooks['has_vector'](self)
|
||
elif self.vocab.vectors.data.size:
|
||
return True
|
||
elif self.tensor.size:
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
property vector:
|
||
"""A real-valued meaning representation. Defaults to an average of the
|
||
token vectors.
|
||
|
||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||
representing the document's semantics.
|
||
"""
|
||
def __get__(self):
|
||
if 'vector' in self.user_hooks:
|
||
return self.user_hooks['vector'](self)
|
||
if self._vector is not None:
|
||
return self._vector
|
||
elif not len(self):
|
||
self._vector = numpy.zeros((self.vocab.vectors_length,),
|
||
dtype='f')
|
||
return self._vector
|
||
elif self.vocab.vectors.data.size > 0:
|
||
vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
|
||
for token in self.c[:self.length]:
|
||
vector += self.vocab.get_vector(token.lex.orth)
|
||
self._vector = vector / len(self)
|
||
return self._vector
|
||
elif self.tensor.size > 0:
|
||
self._vector = self.tensor.mean(axis=0)
|
||
return self._vector
|
||
else:
|
||
return numpy.zeros((self.vocab.vectors_length,),
|
||
dtype='float32')
|
||
|
||
def __set__(self, value):
|
||
self._vector = value
|
||
|
||
property vector_norm:
|
||
"""The L2 norm of the document's vector representation.
|
||
|
||
RETURNS (float): The L2 norm of the vector representation.
|
||
"""
|
||
def __get__(self):
|
||
if 'vector_norm' in self.user_hooks:
|
||
return self.user_hooks['vector_norm'](self)
|
||
cdef float value
|
||
cdef double norm = 0
|
||
if self._vector_norm is None:
|
||
norm = 0.0
|
||
for value in self.vector:
|
||
norm += value * value
|
||
self._vector_norm = sqrt(norm) if norm != 0 else 0
|
||
return self._vector_norm
|
||
|
||
def __set__(self, value):
|
||
self._vector_norm = value
|
||
|
||
property text:
|
||
"""A unicode representation of the document text.
|
||
|
||
RETURNS (unicode): The original verbatim text of the document.
|
||
"""
|
||
def __get__(self):
|
||
return u''.join(t.text_with_ws for t in self)
|
||
|
||
property text_with_ws:
|
||
"""An alias of `Doc.text`, provided for duck-type compatibility with
|
||
`Span` and `Token`.
|
||
|
||
RETURNS (unicode): The original verbatim text of the document.
|
||
"""
|
||
def __get__(self):
|
||
return self.text
|
||
|
||
property ents:
|
||
"""Iterate over the entities in the document. Yields named-entity
|
||
`Span` objects, if the entity recognizer has been applied to the
|
||
document.
|
||
|
||
YIELDS (Span): Entities in the document.
|
||
|
||
EXAMPLE: Iterate over the span to get individual Token objects,
|
||
or access the label:
|
||
|
||
>>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
||
>>> ents = list(tokens.ents)
|
||
>>> assert ents[0].label == 346
|
||
>>> assert ents[0].label_ == 'PERSON'
|
||
>>> assert ents[0].orth_ == 'Best'
|
||
>>> assert ents[0].text == 'Mr. Best'
|
||
"""
|
||
def __get__(self):
|
||
cdef int i
|
||
cdef const TokenC* token
|
||
cdef int start = -1
|
||
cdef attr_t label = 0
|
||
output = []
|
||
for i in range(self.length):
|
||
token = &self.c[i]
|
||
if token.ent_iob == 1:
|
||
if start == -1:
|
||
seq = ['%s|%s' % (t.text, t.ent_iob_) for t in self[i-5:i+5]]
|
||
raise ValueError(Errors.E093.format(seq=' '.join(seq)))
|
||
elif token.ent_iob == 2 or token.ent_iob == 0:
|
||
if start != -1:
|
||
output.append(Span(self, start, i, label=label))
|
||
start = -1
|
||
label = 0
|
||
elif token.ent_iob == 3:
|
||
if start != -1:
|
||
output.append(Span(self, start, i, label=label))
|
||
start = i
|
||
label = token.ent_type
|
||
if start != -1:
|
||
output.append(Span(self, start, self.length, label=label))
|
||
return tuple(output)
|
||
|
||
def __set__(self, ents):
|
||
# TODO:
|
||
# 1. Allow negative matches
|
||
# 2. Ensure pre-set NERs are not over-written during statistical
|
||
# prediction
|
||
# 3. Test basic data-driven ORTH gazetteer
|
||
# 4. Test more nuanced date and currency regex
|
||
|
||
tokens_in_ents = {}
|
||
cdef attr_t entity_type
|
||
cdef int ent_start, ent_end
|
||
for ent_info in ents:
|
||
entity_type, ent_start, ent_end = get_entity_info(ent_info)
|
||
for token_index in range(ent_start, ent_end):
|
||
if token_index in tokens_in_ents.keys():
|
||
raise ValueError(Errors.E103.format(
|
||
span1=(tokens_in_ents[token_index][0],
|
||
tokens_in_ents[token_index][1],
|
||
self.vocab.strings[tokens_in_ents[token_index][2]]),
|
||
span2=(ent_start, ent_end, self.vocab.strings[entity_type])))
|
||
tokens_in_ents[token_index] = (ent_start, ent_end, entity_type)
|
||
|
||
cdef int i
|
||
for i in range(self.length):
|
||
self.c[i].ent_type = 0
|
||
self.c[i].ent_iob = 0 # Means missing.
|
||
cdef attr_t ent_type
|
||
cdef int start, end
|
||
for ent_info in ents:
|
||
ent_type, start, end = get_entity_info(ent_info)
|
||
if ent_type is None or ent_type < 0:
|
||
# Mark as O
|
||
for i in range(start, end):
|
||
self.c[i].ent_type = 0
|
||
self.c[i].ent_iob = 2
|
||
else:
|
||
# Mark (inside) as I
|
||
for i in range(start, end):
|
||
self.c[i].ent_type = ent_type
|
||
self.c[i].ent_iob = 1
|
||
# Set start as B
|
||
self.c[start].ent_iob = 3
|
||
|
||
property noun_chunks:
|
||
"""Iterate over the base noun phrases in the document. Yields base
|
||
noun-phrase #[code Span] objects, if the document has been
|
||
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
|
||
phrase that does not permit other NPs to be nested within it – so no
|
||
NP-level coordination, no prepositional phrases, and no relative
|
||
clauses.
|
||
|
||
YIELDS (Span): Noun chunks in the document.
|
||
"""
|
||
def __get__(self):
|
||
if not self.is_parsed:
|
||
raise ValueError(Errors.E029)
|
||
# Accumulate the result before beginning to iterate over it. This
|
||
# prevents the tokenisation from being changed out from under us
|
||
# during the iteration. The tricky thing here is that Span accepts
|
||
# its tokenisation changing, so it's okay once we have the Span
|
||
# objects. See Issue #375.
|
||
spans = []
|
||
if self.noun_chunks_iterator is not None:
|
||
for start, end, label in self.noun_chunks_iterator(self):
|
||
spans.append(Span(self, start, end, label=label))
|
||
for span in spans:
|
||
yield span
|
||
|
||
property sents:
|
||
"""Iterate over the sentences in the document. Yields sentence `Span`
|
||
objects. Sentence spans have no label. To improve accuracy on informal
|
||
texts, spaCy calculates sentence boundaries from the syntactic
|
||
dependency parse. If the parser is disabled, the `sents` iterator will
|
||
be unavailable.
|
||
|
||
EXAMPLE:
|
||
>>> doc = nlp("This is a sentence. Here's another...")
|
||
>>> assert [s.root.text for s in doc.sents] == ["is", "'s"]
|
||
"""
|
||
def __get__(self):
|
||
if not self.is_sentenced:
|
||
raise ValueError(Errors.E030)
|
||
if 'sents' in self.user_hooks:
|
||
yield from self.user_hooks['sents'](self)
|
||
else:
|
||
start = 0
|
||
for i in range(1, self.length):
|
||
if self.c[i].sent_start == 1:
|
||
yield Span(self, start, i)
|
||
start = i
|
||
if start != self.length:
|
||
yield Span(self, start, self.length)
|
||
|
||
cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
|
||
if self.length == 0:
|
||
# Flip these to false when we see the first token.
|
||
self.is_tagged = False
|
||
self.is_parsed = False
|
||
if self.length == self.max_length:
|
||
self._realloc(self.length * 2)
|
||
cdef TokenC* t = &self.c[self.length]
|
||
if LexemeOrToken is const_TokenC_ptr:
|
||
t[0] = lex_or_tok[0]
|
||
else:
|
||
t.lex = lex_or_tok
|
||
if self.length == 0:
|
||
t.idx = 0
|
||
else:
|
||
t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
|
||
t.l_edge = self.length
|
||
t.r_edge = self.length
|
||
if t.lex.orth == 0:
|
||
raise ValueError(Errors.E031.format(i=self.length))
|
||
t.spacy = has_space
|
||
self.length += 1
|
||
return t.idx + t.lex.length + t.spacy
|
||
|
||
@cython.boundscheck(False)
|
||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||
"""Export given token attributes to a numpy `ndarray`.
|
||
If `attr_ids` is a sequence of M attributes, the output array will be
|
||
of shape `(N, M)`, where N is the length of the `Doc` (in tokens). If
|
||
`attr_ids` is a single attribute, the output shape will be (N,). You
|
||
can specify attributes by integer ID (e.g. spacy.attrs.LEMMA) or
|
||
string name (e.g. 'LEMMA' or 'lemma').
|
||
|
||
attr_ids (list[]): A list of attributes (int IDs or string names).
|
||
RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
|
||
per word, and one column per attribute indicated in the input
|
||
`attr_ids`.
|
||
|
||
EXAMPLE:
|
||
>>> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
>>> doc = nlp(text)
|
||
>>> # All strings mapped to integers, for easy export to numpy
|
||
>>> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
"""
|
||
cdef int i, j
|
||
cdef attr_id_t feature
|
||
cdef np.ndarray[attr_t, ndim=2] output
|
||
# Handle scalar/list inputs of strings/ints for py_attr_ids
|
||
if not hasattr(py_attr_ids, '__iter__') \
|
||
and not isinstance(py_attr_ids, basestring_):
|
||
py_attr_ids = [py_attr_ids]
|
||
|
||
# Allow strings, e.g. 'lemma' or 'LEMMA'
|
||
py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, 'upper') else id_)
|
||
for id_ in py_attr_ids]
|
||
# Make an array from the attributes --- otherwise our inner loop is
|
||
# Python dict iteration.
|
||
cdef np.ndarray attr_ids = numpy.asarray(py_attr_ids, dtype='i')
|
||
output = numpy.ndarray(shape=(self.length, len(attr_ids)),
|
||
dtype=numpy.uint64)
|
||
c_output = <attr_t*>output.data
|
||
c_attr_ids = <attr_id_t*>attr_ids.data
|
||
cdef TokenC* token
|
||
cdef int nr_attr = attr_ids.shape[0]
|
||
for i in range(self.length):
|
||
token = &self.c[i]
|
||
for j in range(nr_attr):
|
||
c_output[i*nr_attr + j] = get_token_attr(token, c_attr_ids[j])
|
||
# Handle 1d case
|
||
return output if len(attr_ids) >= 2 else output.reshape((self.length,))
|
||
|
||
def count_by(self, attr_id_t attr_id, exclude=None,
|
||
PreshCounter counts=None):
|
||
"""Count the frequencies of a given attribute. Produces a dict of
|
||
`{attribute (int): count (ints)}` frequencies, keyed by the values of
|
||
the given attribute ID.
|
||
|
||
attr_id (int): The attribute ID to key the counts.
|
||
RETURNS (dict): A dictionary mapping attributes to integer counts.
|
||
|
||
EXAMPLE:
|
||
>>> from spacy import attrs
|
||
>>> doc = nlp(u'apple apple orange banana')
|
||
>>> tokens.count_by(attrs.ORTH)
|
||
{12800L: 1, 11880L: 2, 7561L: 1}
|
||
>>> tokens.to_array([attrs.ORTH])
|
||
array([[11880], [11880], [7561], [12800]])
|
||
"""
|
||
cdef int i
|
||
cdef attr_t attr
|
||
cdef size_t count
|
||
|
||
if counts is None:
|
||
counts = PreshCounter()
|
||
output_dict = True
|
||
else:
|
||
output_dict = False
|
||
# Take this check out of the loop, for a bit of extra speed
|
||
if exclude is None:
|
||
for i in range(self.length):
|
||
counts.inc(get_token_attr(&self.c[i], attr_id), 1)
|
||
else:
|
||
for i in range(self.length):
|
||
if not exclude(self[i]):
|
||
attr = get_token_attr(&self.c[i], attr_id)
|
||
counts.inc(attr, 1)
|
||
if output_dict:
|
||
return dict(counts)
|
||
|
||
def _realloc(self, new_size):
|
||
self.max_length = new_size
|
||
n = new_size + (PADDING * 2)
|
||
# What we're storing is a "padded" array. We've jumped forward PADDING
|
||
# places, and are storing the pointer to that. This way, we can access
|
||
# words out-of-bounds, and get out-of-bounds markers.
|
||
# Now that we want to realloc, we need the address of the true start,
|
||
# so we jump the pointer back PADDING places.
|
||
cdef TokenC* data_start = self.c - PADDING
|
||
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
|
||
self.c = data_start + PADDING
|
||
cdef int i
|
||
for i in range(self.length, self.max_length + PADDING):
|
||
self.c[i].lex = &EMPTY_LEXEME
|
||
|
||
cdef void set_parse(self, const TokenC* parsed) nogil:
|
||
# TODO: This method is fairly misleading atm. It's used by Parser
|
||
# to actually apply the parse calculated. Need to rethink this.
|
||
|
||
# Probably we should use from_array?
|
||
self.is_parsed = True
|
||
for i in range(self.length):
|
||
self.c[i] = parsed[i]
|
||
|
||
def from_array(self, attrs, array):
|
||
if SENT_START in attrs and HEAD in attrs:
|
||
raise ValueError(Errors.E032)
|
||
cdef int i, col
|
||
cdef attr_id_t attr_id
|
||
cdef TokenC* tokens = self.c
|
||
cdef int length = len(array)
|
||
# Get set up for fast loading
|
||
cdef Pool mem = Pool()
|
||
cdef int n_attrs = len(attrs)
|
||
attr_ids = <attr_id_t*>mem.alloc(n_attrs, sizeof(attr_id_t))
|
||
for i, attr_id in enumerate(attrs):
|
||
attr_ids[i] = attr_id
|
||
# Now load the data
|
||
for i in range(self.length):
|
||
token = &self.c[i]
|
||
for j in range(n_attrs):
|
||
Token.set_struct_attr(token, attr_ids[j], array[i, j])
|
||
# Auxiliary loading logic
|
||
for col, attr_id in enumerate(attrs):
|
||
if attr_id == TAG:
|
||
for i in range(length):
|
||
if array[i, col] != 0:
|
||
self.vocab.morphology.assign_tag(&tokens[i], array[i, col])
|
||
# set flags
|
||
self.is_parsed = bool(HEAD in attrs or DEP in attrs)
|
||
self.is_tagged = bool(TAG in attrs or POS in attrs)
|
||
# if document is parsed, set children
|
||
if self.is_parsed:
|
||
set_children_from_heads(self.c, self.length)
|
||
return self
|
||
|
||
def get_lca_matrix(self):
|
||
"""Calculates the lowest common ancestor matrix for a given `Doc`.
|
||
Returns LCA matrix containing the integer index of the ancestor, or -1
|
||
if no common ancestor is found (ex if span excludes a necessary
|
||
ancestor). Apologies about the recursion, but the impact on
|
||
performance is negligible given the natural limitations on the depth
|
||
of a typical human sentence.
|
||
"""
|
||
# Efficiency notes:
|
||
# We can easily improve the performance here by iterating in Cython.
|
||
# To loop over the tokens in Cython, the easiest way is:
|
||
# for token in doc.c[:doc.c.length]:
|
||
# head = token + token.head
|
||
# Both token and head will be TokenC* here. The token.head attribute
|
||
# is an integer offset.
|
||
def __pairwise_lca(token_j, token_k, lca_matrix):
|
||
if lca_matrix[token_j.i][token_k.i] != -2:
|
||
return lca_matrix[token_j.i][token_k.i]
|
||
elif token_j == token_k:
|
||
lca_index = token_j.i
|
||
elif token_k.head == token_j:
|
||
lca_index = token_j.i
|
||
elif token_j.head == token_k:
|
||
lca_index = token_k.i
|
||
elif (token_j.head == token_j) and (token_k.head == token_k):
|
||
lca_index = -1
|
||
else:
|
||
lca_index = __pairwise_lca(token_j.head, token_k.head,
|
||
lca_matrix)
|
||
lca_matrix[token_j.i][token_k.i] = lca_index
|
||
lca_matrix[token_k.i][token_j.i] = lca_index
|
||
|
||
return lca_index
|
||
|
||
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
|
||
lca_matrix.fill(-2)
|
||
for j in range(len(self)):
|
||
token_j = self[j]
|
||
for k in range(j, len(self)):
|
||
token_k = self[k]
|
||
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
|
||
lca_matrix[k][j] = lca_matrix[j][k]
|
||
return lca_matrix
|
||
|
||
def to_disk(self, path, **exclude):
|
||
"""Save the current state to a directory.
|
||
|
||
path (unicode or Path): A path to a directory, which will be created if
|
||
it doesn't exist. Paths may be either strings or Path-like objects.
|
||
"""
|
||
path = util.ensure_path(path)
|
||
with path.open('wb') as file_:
|
||
file_.write(self.to_bytes(**exclude))
|
||
|
||
def from_disk(self, path, **exclude):
|
||
"""Loads state from a directory. Modifies the object in place and
|
||
returns it.
|
||
|
||
path (unicode or Path): A path to a directory. Paths may be either
|
||
strings or `Path`-like objects.
|
||
RETURNS (Doc): The modified `Doc` object.
|
||
"""
|
||
path = util.ensure_path(path)
|
||
with path.open('rb') as file_:
|
||
bytes_data = file_.read()
|
||
return self.from_bytes(bytes_data, **exclude)
|
||
|
||
def to_bytes(self, **exclude):
|
||
"""Serialize, i.e. export the document contents to a binary string.
|
||
|
||
RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
|
||
all annotations.
|
||
"""
|
||
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE]
|
||
|
||
if self.is_tagged:
|
||
array_head.append(TAG)
|
||
# if doc parsed add head and dep attribute
|
||
if self.is_parsed:
|
||
array_head.extend([HEAD, DEP])
|
||
# otherwise add sent_start
|
||
else:
|
||
array_head.append(SENT_START)
|
||
# Msgpack doesn't distinguish between lists and tuples, which is
|
||
# vexing for user data. As a best guess, we *know* that within
|
||
# keys, we must have tuples. In values we just have to hope
|
||
# users don't mind getting a list instead of a tuple.
|
||
serializers = {
|
||
'text': lambda: self.text,
|
||
'array_head': lambda: array_head,
|
||
'array_body': lambda: self.to_array(array_head),
|
||
'sentiment': lambda: self.sentiment,
|
||
'tensor': lambda: self.tensor,
|
||
}
|
||
if 'user_data' not in exclude and self.user_data:
|
||
user_data_keys, user_data_values = list(zip(*self.user_data.items()))
|
||
serializers['user_data_keys'] = lambda: msgpack.dumps(user_data_keys)
|
||
serializers['user_data_values'] = lambda: msgpack.dumps(user_data_values)
|
||
|
||
return util.to_bytes(serializers, exclude)
|
||
|
||
def from_bytes(self, bytes_data, **exclude):
|
||
"""Deserialize, i.e. import the document contents from a binary string.
|
||
|
||
data (bytes): The string to load from.
|
||
RETURNS (Doc): Itself.
|
||
"""
|
||
if self.length != 0:
|
||
raise ValueError(Errors.E033.format(length=self.length))
|
||
deserializers = {
|
||
'text': lambda b: None,
|
||
'array_head': lambda b: None,
|
||
'array_body': lambda b: None,
|
||
'sentiment': lambda b: None,
|
||
'tensor': lambda b: None,
|
||
'user_data_keys': lambda b: None,
|
||
'user_data_values': lambda b: None,
|
||
}
|
||
|
||
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
||
# Msgpack doesn't distinguish between lists and tuples, which is
|
||
# vexing for user data. As a best guess, we *know* that within
|
||
# keys, we must have tuples. In values we just have to hope
|
||
# users don't mind getting a list instead of a tuple.
|
||
if 'user_data' not in exclude and 'user_data_keys' in msg:
|
||
user_data_keys = msgpack.loads(msg['user_data_keys'],
|
||
use_list=False, raw=False)
|
||
user_data_values = msgpack.loads(msg['user_data_values'], raw=False)
|
||
for key, value in zip(user_data_keys, user_data_values):
|
||
self.user_data[key] = value
|
||
|
||
cdef int i, start, end, has_space
|
||
|
||
if 'sentiment' not in exclude and 'sentiment' in msg:
|
||
self.sentiment = msg['sentiment']
|
||
if 'tensor' not in exclude and 'tensor' in msg:
|
||
self.tensor = msg['tensor']
|
||
|
||
start = 0
|
||
cdef const LexemeC* lex
|
||
cdef unicode orth_
|
||
text = msg['text']
|
||
attrs = msg['array_body']
|
||
for i in range(attrs.shape[0]):
|
||
end = start + attrs[i, 0]
|
||
has_space = attrs[i, 1]
|
||
orth_ = text[start:end]
|
||
lex = self.vocab.get(self.mem, orth_)
|
||
self.push_back(lex, has_space)
|
||
start = end + has_space
|
||
self.from_array(msg['array_head'][2:], attrs[:, 2:])
|
||
return self
|
||
|
||
def extend_tensor(self, tensor):
|
||
'''Concatenate a new tensor onto the doc.tensor object.
|
||
|
||
The doc.tensor attribute holds dense feature vectors
|
||
computed by the models in the pipeline. Let's say a
|
||
document with 30 words has a tensor with 128 dimensions
|
||
per word. doc.tensor.shape will be (30, 128). After
|
||
calling doc.extend_tensor with an array of shape (30, 64),
|
||
doc.tensor == (30, 192).
|
||
'''
|
||
xp = get_array_module(self.tensor)
|
||
if self.tensor.size == 0:
|
||
self.tensor.resize(tensor.shape, refcheck=False)
|
||
copy_array(self.tensor, tensor)
|
||
else:
|
||
self.tensor = xp.hstack((self.tensor, tensor))
|
||
|
||
def retokenize(self):
|
||
'''Context manager to handle retokenization of the Doc.
|
||
Modifications to the Doc's tokenization are stored, and then
|
||
made all at once when the context manager exits. This is
|
||
much more efficient, and less error-prone.
|
||
|
||
All views of the Doc (Span and Token) created before the
|
||
retokenization are invalidated, although they may accidentally
|
||
continue to work.
|
||
'''
|
||
return Retokenizer(self)
|
||
|
||
def _bulk_merge(self, spans, attributes):
|
||
"""Retokenize the document, such that the spans given as arguments
|
||
are merged into single tokens. The spans need to be in document
|
||
order, and no span intersection is allowed.
|
||
|
||
spans (Span[]): Spans to merge, in document order, with all span
|
||
intersections empty. Cannot be emty.
|
||
attributes (Dictionary[]): Attributes to assign to the merged tokens. By default,
|
||
must be the same lenghth as spans, emty dictionaries are allowed.
|
||
attributes are inherited from the syntactic root of the span.
|
||
RETURNS (Token): The first newly merged token.
|
||
"""
|
||
cdef unicode tag, lemma, ent_type
|
||
|
||
assert len(attributes) == len(spans), "attribute length should be equal to span length" + str(len(attributes)) +\
|
||
str(len(spans))
|
||
with self.retokenize() as retokenizer:
|
||
for i, span in enumerate(spans):
|
||
fix_attributes(self, attributes[i])
|
||
remove_label_if_necessary(attributes[i])
|
||
retokenizer.merge(span, attributes[i])
|
||
|
||
def merge(self, int start_idx, int end_idx, *args, **attributes):
|
||
"""Retokenize the document, such that the span at
|
||
`doc.text[start_idx : end_idx]` is merged into a single token. If
|
||
`start_idx` and `end_idx `do not mark start and end token boundaries,
|
||
the document remains unchanged.
|
||
|
||
start_idx (int): Character index of the start of the slice to merge.
|
||
end_idx (int): Character index after the end of the slice to merge.
|
||
**attributes: Attributes to assign to the merged token. By default,
|
||
attributes are inherited from the syntactic root of the span.
|
||
RETURNS (Token): The newly merged token, or `None` if the start and end
|
||
indices did not fall at token boundaries.
|
||
"""
|
||
cdef unicode tag, lemma, ent_type
|
||
if len(args) == 3:
|
||
deprecation_warning(Warnings.W003)
|
||
tag, lemma, ent_type = args
|
||
attributes[TAG] = tag
|
||
attributes[LEMMA] = lemma
|
||
attributes[ENT_TYPE] = ent_type
|
||
elif not args:
|
||
fix_attributes(self, attributes)
|
||
elif args:
|
||
raise ValueError(Errors.E034.format(n_args=len(args),
|
||
args=repr(args),
|
||
kwargs=repr(attributes)))
|
||
remove_label_if_necessary(attributes)
|
||
|
||
attributes = intify_attrs(attributes, strings_map=self.vocab.strings)
|
||
|
||
cdef int start = token_by_start(self.c, self.length, start_idx)
|
||
if start == -1:
|
||
return None
|
||
cdef int end = token_by_end(self.c, self.length, end_idx)
|
||
if end == -1:
|
||
return None
|
||
# Currently we have the token index, we want the range-end index
|
||
end += 1
|
||
with self.retokenize() as retokenizer:
|
||
retokenizer.merge(self[start:end], attrs=attributes)
|
||
return self[start]
|
||
|
||
def print_tree(self, light=False, flat=False):
|
||
"""Returns the parse trees in JSON (dict) format.
|
||
|
||
light (bool): Don't include lemmas or entities.
|
||
flat (bool): Don't include arcs or modifiers.
|
||
RETURNS (dict): Parse tree as dict.
|
||
|
||
EXAMPLE:
|
||
>>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.')
|
||
>>> trees = doc.print_tree()
|
||
>>> trees[1]
|
||
{'modifiers': [
|
||
{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice',
|
||
'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP',
|
||
'lemma': 'Alice'},
|
||
{'modifiers': [
|
||
{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det',
|
||
'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}],
|
||
'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN',
|
||
'POS_fine': 'NN', 'lemma': 'pizza'},
|
||
{'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct',
|
||
'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}],
|
||
'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB',
|
||
'POS_fine': 'VBD', 'lemma': 'eat'}
|
||
"""
|
||
return parse_tree(self, light=light, flat=flat)
|
||
|
||
|
||
cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2:
|
||
cdef int i
|
||
for i in range(length):
|
||
if tokens[i].idx == start_char:
|
||
return i
|
||
else:
|
||
return -1
|
||
|
||
|
||
cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2:
|
||
cdef int i
|
||
for i in range(length):
|
||
if tokens[i].idx + tokens[i].lex.length == end_char:
|
||
return i
|
||
else:
|
||
return -1
|
||
|
||
|
||
cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
|
||
cdef TokenC* head
|
||
cdef TokenC* child
|
||
cdef int i
|
||
# Set number of left/right children to 0. We'll increment it in the loops.
|
||
for i in range(length):
|
||
tokens[i].l_kids = 0
|
||
tokens[i].r_kids = 0
|
||
tokens[i].l_edge = i
|
||
tokens[i].r_edge = i
|
||
# Twice, for non-projectivity
|
||
for loop_count in range(2):
|
||
# Set left edges
|
||
for i in range(length):
|
||
child = &tokens[i]
|
||
head = &tokens[i + child.head]
|
||
if child < head and loop_count == 0:
|
||
head.l_kids += 1
|
||
if child.l_edge < head.l_edge:
|
||
head.l_edge = child.l_edge
|
||
if child.r_edge > head.r_edge:
|
||
head.r_edge = child.r_edge
|
||
# Set right edges --- same as above, but iterate in reverse
|
||
for i in range(length-1, -1, -1):
|
||
child = &tokens[i]
|
||
head = &tokens[i + child.head]
|
||
if child > head and loop_count == 0:
|
||
head.r_kids += 1
|
||
if child.r_edge > head.r_edge:
|
||
head.r_edge = child.r_edge
|
||
if child.l_edge < head.l_edge:
|
||
head.l_edge = child.l_edge
|
||
# Set sentence starts
|
||
for i in range(length):
|
||
if tokens[i].head == 0 and tokens[i].dep != 0:
|
||
tokens[tokens[i].l_edge].sent_start = True
|
||
|
||
|
||
def pickle_doc(doc):
|
||
bytes_data = doc.to_bytes(vocab=False, user_data=False)
|
||
hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks,
|
||
doc.user_token_hooks)
|
||
return (unpickle_doc, (doc.vocab, dill.dumps(hooks_and_data), bytes_data))
|
||
|
||
|
||
def unpickle_doc(vocab, hooks_and_data, bytes_data):
|
||
user_data, doc_hooks, span_hooks, token_hooks = dill.loads(hooks_and_data)
|
||
|
||
doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data,
|
||
exclude='user_data')
|
||
doc.user_hooks.update(doc_hooks)
|
||
doc.user_span_hooks.update(span_hooks)
|
||
doc.user_token_hooks.update(token_hooks)
|
||
return doc
|
||
|
||
|
||
copy_reg.pickle(Doc, pickle_doc, unpickle_doc)
|
||
|
||
def remove_label_if_necessary(attributes):
|
||
# More deprecated attribute handling =/
|
||
if 'label' in attributes:
|
||
attributes['ent_type'] = attributes.pop('label')
|
||
|
||
def fix_attributes(doc, attributes):
|
||
if 'label' in attributes and 'ent_type' not in attributes:
|
||
if isinstance(attributes['label'], int):
|
||
attributes[ENT_TYPE] = attributes['label']
|
||
else:
|
||
attributes[ENT_TYPE] = doc.vocab.strings[attributes['label']]
|
||
if 'ent_type' in attributes:
|
||
attributes[ENT_TYPE] = attributes['ent_type']
|
||
|
||
def get_entity_info(ent_info):
|
||
if isinstance(ent_info, Span):
|
||
ent_type = ent_info.label
|
||
start = ent_info.start
|
||
end = ent_info.end
|
||
elif len(ent_info) == 3:
|
||
ent_type, start, end = ent_info
|
||
else:
|
||
ent_id, ent_type, start, end = ent_info
|
||
return ent_type, start, end
|