spaCy/spacy/syntax/beam_parser.pyx
2016-08-06 16:23:42 +02:00

191 lines
6.5 KiB
Cython

# cython: profile=True
# cython: experimental_cpp_class_def=True
# cython: cdivision=True
# cython: infer_types=True
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport rand
from libc.math cimport log, exp, isnan, isinf
import random
import os.path
from os import path
import shutil
import json
import math
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport real_hash64 as hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from util import Config
from thinc.linear.features cimport ConjunctionExtracter
from thinc.structs cimport FeatureC, ExampleC
from thinc.extra.search cimport Beam
from thinc.extra.search cimport MaxViolation
from thinc.extra.eg cimport Example
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .parser cimport Parser
from ._neural cimport ParserPerceptron
from ._neural cimport ParserNeuralNet
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef int BEAM_WIDTH = 16
cdef weight_t BEAM_DENSITY = 0.001
cdef class BeamParser(Parser):
cdef public int beam_width
cdef public weight_t beam_density
def __init__(self, *args, **kwargs):
self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
self.beam_density = kwargs.get('beam_density', BEAM_DENSITY)
Parser.__init__(self, *args, **kwargs)
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
self._parseC(tokens, length, nr_feat, nr_class)
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
cdef Beam beam = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
beam.initialize(_init_state, length, tokens)
beam.check_done(_check_final_state, NULL)
while not beam.is_done:
self._advance_beam(beam, None, False)
state = <StateClass>beam.at(0)
self.moves.finalize_state(state.c)
for i in range(length):
tokens[i] = state.c._sent[i]
_cleanup(beam)
def train(self, Doc tokens, GoldParse gold_parse, itn=0):
self.moves.preprocess_gold(gold_parse)
cdef Beam pred = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
pred.initialize(_init_state, tokens.length, tokens.c)
pred.check_done(_check_final_state, NULL)
cdef Beam gold = Beam(self.moves.n_moves, self.beam_width, min_density=self.beam_density)
gold.initialize(_init_state, tokens.length, tokens.c)
gold.check_done(_check_final_state, NULL)
violn = MaxViolation()
while not pred.is_done and not gold.is_done:
# We search separately here, to allow for ambiguity in the gold parse.
self._advance_beam(pred, gold_parse, False)
self._advance_beam(gold, gold_parse, True)
violn.check_crf(pred, gold)
if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
break
else:
violn.check_crf(pred, gold)
min_grad = 0.01 ** (itn+1)
histories = zip(violn.p_probs, violn.p_hist) + zip(violn.g_probs, violn.g_hist)
random.shuffle(histories)
for grad, hist in histories:
assert not math.isnan(grad) and not math.isinf(grad)
if abs(grad) >= min_grad:
self.model._update_from_history(self.moves, tokens, hist, grad)
_cleanup(pred)
_cleanup(gold)
return pred.loss
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
cdef ParserNeuralNet nn_model = None
cdef ParserPerceptron ap_model = None
if isinstance(self.model, ParserNeuralNet):
nn_model = self.model
else:
ap_model = self.model
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.c.is_final():
nr_feat = nn_model._set_featuresC(features, stcls.c)
self.model.set_scoresC(beam.scores[i], features, nr_feat)
self.moves.set_valid(beam.is_valid[i], stcls.c)
if gold is not None:
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.c.is_final():
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
if follow_gold:
for j in range(self.moves.n_moves):
beam.is_valid[i][j] *= beam.costs[i][j] < 1
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest.c, moves[clas].label)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
# Ensure sent_start is set to 0 throughout
for i in range(st.c.length):
st.c._sent[i].sent_start = False
st.c._sent[i].l_edge = i
st.c._sent[i].r_edge = i
st.fast_forward()
Py_INCREF(st)
return <void*>st
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
state = <StateClass>_state
return state.c.hash()