mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			134 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, List
 | |
| 
 | |
| from thinc.types import Floats2d
 | |
| from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
 | |
| from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention
 | |
| from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum
 | |
| from thinc.api import with_cpu, Relu, residual, LayerNorm
 | |
| from thinc.layers.chain import init as init_chain
 | |
| 
 | |
| from ...attrs import ORTH
 | |
| from ...util import registry
 | |
| from ..extract_ngrams import extract_ngrams
 | |
| from ..staticvectors import StaticVectors
 | |
| from ...tokens import Doc
 | |
| from .tok2vec import get_tok2vec_width
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatCNN.v1")
 | |
| def build_simple_cnn_text_classifier(
 | |
|     tok2vec: Model, exclusive_classes: bool, nO: Optional[int] = None
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     """
 | |
|     Build a simple CNN text classifier, given a token-to-vector model as inputs.
 | |
|     If exclusive_classes=True, a softmax non-linearity is applied, so that the
 | |
|     outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
 | |
|     is applied instead, so that outputs are in the range [0, 1].
 | |
|     """
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         cnn = tok2vec >> list2ragged() >> reduce_mean()
 | |
|         if exclusive_classes:
 | |
|             output_layer = Softmax(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
 | |
|             model = cnn >> output_layer
 | |
|             model.set_ref("output_layer", output_layer)
 | |
|         else:
 | |
|             linear_layer = Linear(nO=nO, nI=tok2vec.maybe_get_dim("nO"))
 | |
|             model = cnn >> linear_layer >> Logistic()
 | |
|             model.set_ref("output_layer", linear_layer)
 | |
|     model.set_ref("tok2vec", tok2vec)
 | |
|     model.set_dim("nO", nO)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatBOW.v1")
 | |
| def build_bow_text_classifier(
 | |
|     exclusive_classes: bool,
 | |
|     ngram_size: int,
 | |
|     no_output_layer: bool,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         sparse_linear = SparseLinear(nO)
 | |
|         model = extract_ngrams(ngram_size, attr=ORTH) >> sparse_linear
 | |
|         model = with_cpu(model, model.ops)
 | |
|         if not no_output_layer:
 | |
|             output_layer = softmax_activation() if exclusive_classes else Logistic()
 | |
|             model = model >> with_cpu(output_layer, output_layer.ops)
 | |
|     model.set_ref("output_layer", sparse_linear)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatEnsemble.v2")
 | |
| def build_text_classifier_v2(
 | |
|     tok2vec: Model[List[Doc], List[Floats2d]],
 | |
|     linear_model: Model[List[Doc], Floats2d],
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     exclusive_classes = not linear_model.attrs["multi_label"]
 | |
|     with Model.define_operators({">>": chain, "|": concatenate}):
 | |
|         width = tok2vec.maybe_get_dim("nO")
 | |
|         attention_layer = ParametricAttention(
 | |
|             width
 | |
|         )  # TODO: benchmark performance difference of this layer
 | |
|         maxout_layer = Maxout(nO=width, nI=width)
 | |
|         norm_layer = LayerNorm(nI=width)
 | |
|         cnn_model = (
 | |
|             tok2vec
 | |
|             >> list2ragged()
 | |
|             >> attention_layer
 | |
|             >> reduce_sum()
 | |
|             >> residual(maxout_layer >> norm_layer >> Dropout(0.0))
 | |
|         )
 | |
| 
 | |
|         nO_double = nO * 2 if nO else None
 | |
|         if exclusive_classes:
 | |
|             output_layer = Softmax(nO=nO, nI=nO_double)
 | |
|         else:
 | |
|             output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
 | |
|         model = (linear_model | cnn_model) >> output_layer
 | |
|         model.set_ref("tok2vec", tok2vec)
 | |
|     if model.has_dim("nO") is not False:
 | |
|         model.set_dim("nO", nO)
 | |
|     model.set_ref("output_layer", linear_model.get_ref("output_layer"))
 | |
|     model.set_ref("attention_layer", attention_layer)
 | |
|     model.set_ref("maxout_layer", maxout_layer)
 | |
|     model.set_ref("norm_layer", norm_layer)
 | |
|     model.attrs["multi_label"] = not exclusive_classes
 | |
| 
 | |
|     model.init = init_ensemble_textcat
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def init_ensemble_textcat(model, X, Y) -> Model:
 | |
|     tok2vec_width = get_tok2vec_width(model)
 | |
|     model.get_ref("attention_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("maxout_layer").set_dim("nO", tok2vec_width)
 | |
|     model.get_ref("maxout_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nI", tok2vec_width)
 | |
|     model.get_ref("norm_layer").set_dim("nO", tok2vec_width)
 | |
|     init_chain(model, X, Y)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.TextCatLowData.v1")
 | |
| def build_text_classifier_lowdata(
 | |
|     width: int, dropout: Optional[float], nO: Optional[int] = None
 | |
| ) -> Model[List[Doc], Floats2d]:
 | |
|     # Don't document this yet, I'm not sure it's right.
 | |
|     # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
 | |
|     with Model.define_operators({">>": chain, "**": clone}):
 | |
|         model = (
 | |
|             StaticVectors(width)
 | |
|             >> list2ragged()
 | |
|             >> ParametricAttention(width)
 | |
|             >> reduce_sum()
 | |
|             >> residual(Relu(width, width)) ** 2
 | |
|             >> Linear(nO, width)
 | |
|         )
 | |
|         if dropout:
 | |
|             model = model >> Dropout(dropout)
 | |
|         model = model >> Logistic()
 | |
|     return model
 |