mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* small fix in example imports * throw error when train_corpus or dev_corpus is not a string * small fix in custom logger example * limit macro_auc to labels with 2 annotations * fix typo * also create parents of output_dir if need be * update documentation of textcat scores * refactor TextCatEnsemble * fix tests for new AUC definition * bump to 3.0.0a42 * update docs * rename to spacy.TextCatEnsemble.v2 * spacy.TextCatEnsemble.v1 in legacy * cleanup * small fix * update to 3.0.0rc2 * fix import that got lost in merge * cursed IDE * fix two typos
		
			
				
	
	
		
			60 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional
 | 
						|
from pathlib import Path
 | 
						|
from wasabi import msg
 | 
						|
import typer
 | 
						|
import logging
 | 
						|
import sys
 | 
						|
 | 
						|
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
 | 
						|
from ._util import import_code, setup_gpu
 | 
						|
from ..training.loop import train
 | 
						|
from ..training.initialize import init_nlp
 | 
						|
from .. import util
 | 
						|
 | 
						|
 | 
						|
@app.command(
 | 
						|
    "train", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
 | 
						|
)
 | 
						|
def train_cli(
 | 
						|
    # fmt: off
 | 
						|
    ctx: typer.Context,  # This is only used to read additional arguments
 | 
						|
    config_path: Path = Arg(..., help="Path to config file", exists=True),
 | 
						|
    output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
 | 
						|
    code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
						|
    verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
 | 
						|
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Train or update a spaCy pipeline. Requires data in spaCy's binary format. To
 | 
						|
    convert data from other formats, use the `spacy convert` command. The
 | 
						|
    config file includes all settings and hyperparameters used during traing.
 | 
						|
    To override settings in the config, e.g. settings that point to local
 | 
						|
    paths or that you want to experiment with, you can override them as
 | 
						|
    command line options. For instance, --training.batch_size 128 overrides
 | 
						|
    the value of "batch_size" in the block "[training]". The --code argument
 | 
						|
    lets you pass in a Python file that's imported before training. It can be
 | 
						|
    used to register custom functions and architectures that can then be
 | 
						|
    referenced in the config.
 | 
						|
 | 
						|
    DOCS: https://nightly.spacy.io/api/cli#train
 | 
						|
    """
 | 
						|
    util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
 | 
						|
    # Make sure all files and paths exists if they are needed
 | 
						|
    if not config_path or not config_path.exists():
 | 
						|
        msg.fail("Config file not found", config_path, exits=1)
 | 
						|
    if output_path is not None and not output_path.exists():
 | 
						|
        output_path.mkdir(parents=True)
 | 
						|
        msg.good(f"Created output directory: {output_path}")
 | 
						|
    overrides = parse_config_overrides(ctx.args)
 | 
						|
    import_code(code_path)
 | 
						|
    setup_gpu(use_gpu)
 | 
						|
    with show_validation_error(config_path):
 | 
						|
        config = util.load_config(config_path, overrides=overrides, interpolate=False)
 | 
						|
    msg.divider("Initializing pipeline")
 | 
						|
    with show_validation_error(config_path, hint_fill=False):
 | 
						|
        nlp = init_nlp(config, use_gpu=use_gpu)
 | 
						|
    msg.good("Initialized pipeline")
 | 
						|
    msg.divider("Training pipeline")
 | 
						|
    train(nlp, output_path, use_gpu=use_gpu, stdout=sys.stdout, stderr=sys.stderr)
 |